There is 78 % permafrost and seasonal frozen soil in the Yangtze River's Source Region (SRYR), which is situated in the middle of the Qinghai-Xizang Plateau. Three distinct scenarios were developed in the Soil and Water Assessment Tool (SWAT) to model the effects of land cover change (LCC) on various water balance components. Discharge and percolation of groundwater have decreased by mid-December. This demonstrates the seasonal contributions of subsurface water, which diminish when soil freezes. During winter, when surface water inputs are low, groundwater storage becomes even more critical to ensure water supply due to this periodic trend. An impermeable layer underneath the active layer thickness decreases GWQ and PERC in LCC + permafrost scenario. The water transport and storage phase reached a critical point in August when precipitation, permafrost thawing, and snowmelt caused LATQ to surge. To prevent waterlogging and save water for dry periods, it is necessary to control this peak flow phase. Hydrological processes, permafrost dynamics, and land cover changes in the SRYR are difficult, according to the data. These interactions enhance water circulation throughout the year, recharge of groundwater supplies, surface runoff, and lateral flow. For the region's water resource management to be effective in sustaining ecohydrology, ensuring appropriate water storage, and alleviating freshwater scarcity, these dynamics must be considered.
2024-12-01 Web of ScienceRecently, as global climate change and local disturbances such as wildfires continue, long- and short-term changes in the high-latitude vegetation systems have been observed in various studies. Although remote sensing technology using optical satellites has been widely used in understanding vegetation dynamics in high-latitude areas, there has been limited understanding of various landscape changes at different spatiotemporal scales, their mutual relationships, and overall long-term landscape changes. The objective of this study is to devise a change monitoring strategy that can effectively observe landscape changes at different spatiotemporal scales in the boreal ecosystems from temporally sparse time series remote sensing data. We presented a new post-classification-based change analysis scheme and applied it to time series Landsat data for the central Yakutian study area. Spectral variability between time series data has been a major problem in the analysis of changes that make it difficult to distinguish long- and short-term land cover changes from seasonal growth activities. To address this issue effectively, two ideas in the time series classification, such as the stepwise classification and the lateral stacking strategies were implemented in the classification process. The proposed classification results showed consistently higher overall accuracies of more than 90% obtained in all classes throughout the study period. The temporal classification results revealed the distinct spatial and temporal patterns of the land cover changes in central Yakutia. The spatiotemporal distribution of the short-term class illustrated that the ecosystem disturbance caused by fire could be affected by local thermal and hydrological conditions of the active layer as well as climatic conditions. On the other hand, the long-term class changes revealed land cover trajectories that could not be explained by monotonic increase or decrease. To characterize the long-term land cover change patterns, we applied a piecewise linear model with two line segments to areal class changes. During the former half of the study period, which corresponds to the 2000s, the areal expansion of lakes on the eastern Lena River terrace was the dominant feature of the land cover change. On the other hand, the land cover changes in the latter half of the study period, which corresponds to the 2010s, exhibited that lake area decreased, particularly in the thermokarst lowlands close to the Lena and Aldan rivers. In this area, significant forest decline can also be identified during the 2010s.
2024-06-01 Web of ScienceThe Amazon Basin is at the center of an intensifying discourse about deforestation, land-use, and global change. To date, climate research in the Basin has overwhelmingly focused on the cycling and storage of carbon (C) and its implications for global climate. Missing, however, is a more comprehensive consideration of other significant biophysical climate feedbacks [i.e., CH4, N2O, black carbon, biogenic volatile organic compounds (BV0Cs), aerosols, evapotranspiration, and albedo] and their dynamic responses to both localized (fire, land-use change, infrastructure development, and storms) and global (warming, drying, and some related to El Nino or to warming in the tropical Atlantic) changes. Here, we synthesize the current understanding of (1) sources and fluxes of all major forcing agents, (2) the demonstrated or expected impact of global and local changes on each agent, and (3) the nature, extent, and drivers of anthropogenic change in the Basin. We highlight the large uncertainty in flux magnitude and responses, and their corresponding direct and indirect effects on the regional and global climate system. Despite uncertainty in their responses to change, we conclude that current warming from non-CO2 agents (especially CH4 and N2O) in the Amazon Basin largely offsets- and most likely exceeds-the climate service provided by atmospheric CO2 uptake. We also find that the majority of anthropogenic impacts act to increase the radiative forcing potential of the Basin. Given the large contribution of less-recognized agents (e.g., Amazonian trees alone emit similar to 3.5% of all global CH4), a continuing focus on a single metric (i.e., C uptake and storage) is incompatible with genuine efforts to understand and manage the biogeochemistry of climate in a rapidly changing Amazon Basin.
2021-03-11 Web of ScienceAnalysis of time series imagery from satellite and aircraft platforms is useful for detecting land cover change at plot to regional scales. In this study, we created multi-temporal high spatial resolution land cover maps for seven locations in the Beringian Arctic and assessed the change in land cover over time. Land cover classifications were site specific and mostly aligned with a soil moisture gradient. Time series varied between 60 and 21 years. Four of the five landscapes studied in Alaska underwent an expansion of drier land cover classes while the two landscapes studies in Chukotka, Russia showed an expansion of wetter land cover types. While a range of land cover types was present across the landscapes studied, the extent of shrubs (in Chukotka) and open water (in Alaska) increased in all landscapes where these land cover types were present. The results support trends documented for regional change in NDVI (a measure of vegetation greenness and productivity) as well as a host of other long term, experimental and modeling studies. Using historic change trends for each land cover type at each landscape, we use a simple probabilistic vegetation model to establish hypotheses of future change trajectories for different land cover types at each of the landscapes investigated. This study is a contribution to the International Polar Year Back to the Future project (IPY-BTF).
2012-04-01 Web of ScienceMountain ecosystems are commonly regarded as being highly sensitive to global change. Due to the system complexity and multifaceted interacting drivers, however, understanding current responses and predicting future changes in these ecosystems is extremely difficult. We aim to discuss potential effects of global change on mountain ecosystems and give examples of the underlying response mechanisms as they are understood at present. Based on the development of scientific global change research in mountains and its recent structures, we identify future research needs, highlighting the major lack and the importance of integrated studies that implement multi-factor, multi-method, multi-scale, and interdisciplinary research.
2011-04-01 Web of Science