共检索到 26

Surface soil moisture (SSM) is a key limiting factor for vegetation growth in alpine meadow on the Qinghai-Tibetan Plateau (QTP). Patches with various sizes and types may cause the redistribution of SSM by changing soil hydrological processes, and then trigger or accelerate alpine grassland degradation. Therefore, it is vital to understand the effects of patchiness on SSM at multi-scales to provide a reference for alpine grassland restoration. However, there is a lack of direct observational evidence concerning the role of the size and type of patches on SSM, and little is known about the effects of patches pattern on SSM at plot scale. Here, we first measured SSM of typical patches with different sizes and types at patch scale and investigated their patterns and SSM spatial distribution through unmanned aerial vehicle (UAV)-mounted multi-type cameras at plot scale. We then analyzed the role of the size and type of patchiness on SSM at both patch and plot scales. Results showed that: (1) in situ measured SSM of typical patches was significantly different (P < 0.01), original vegetation patch (OV) had the highest SSM, followed by isolate vegetation patch (IV), small bare patch (SP), medium bare patch (MP) and large bare patch (LP); (2) the proposed method based on UAV images was able to estimate SSM (0-40 cm) with a satisfactory accuracy (R-2 = 0.89, P < 0.001); (3) all landscape indices of OV, with the exception of patch density, were positively correlated with SSM at plot scale, while most of the landscape indices of LP and IV showed negative correlations (P < 0.05). Our results indicated that patchiness intensified the spatial heterogeneity of SSM and potentially accelerated the alpine meadow degradation. Preventing the development of OV into IV and the expansion of LP is a critical task for alpine meadow management and restoration.

期刊论文 2025-09-01 DOI: http://dx.doi.org/10.3390/rs12244121

Alpine vegetation, cold deserts, and glacial landscapes significantly impact runoff generation and convergence in cold and alpine regions. The presence of existing mountain permafrost complicates these impacts further. To better understand the specific regulation of runoff by alpine landscapes, we analyzed the spatiotemporal capacity for runoff generation and the contributions of water from different landscape types within a typical alpine permafrost watershed: the upper reaches of the Shule River (USR) basin in the Qinghai-Tibet Plateau. The analysis was informed by both field observations and simulations using the VIC model, which incorporated a new glacier module. We identified that glaciers, alpine meadows, cold deserts, and barren landscape zones as the four major runoff generation regions, collectively accounting for approximately 95 % of the USR runoff. The runoff depth in each landscape zone was calculated to express its runoff generation capacity, with an order of: glacier > cold desert > barren > alpine grassland > alpine meadow > shrub > swamp meadow. The alpine regions above 4000 m in altitude are the primary runoff generation areas, and the runoff generation capacity gradually decreases from high to low altitudes in the alpine basin. Due to seasonal variations in rainfall distribution, glacier melting, and permafrost thawing-freezing, the dominant landscape types contributing to runoff varied monthly. The simulated results indicate that permafrost plays an important role in runoff generation. Although permafrost degradation had a slight impact on the annual total runoff generated from each landscape zone (not taking into account of ground ice), seasonal runoff generated in each landscape exhibited significant changes in response to permafrost thawing. After permafrost completely thawed in each landscape zone, generated flood flow decreased, while low flow conversely increased, implying an enhanced water retention capacity of alpine landscapes following permafrost degradation. Additionally, the responses of runoff to permafrost changes varied across different alpine landscapes. These findings enhance our understanding of the mechanisms underlying runoff generation and convergence in cold and alpine watersheds of the Northern Hemisphere.

期刊论文 2025-02-01 DOI: 10.1016/j.catena.2024.108643 ISSN: 0341-8162

By analyzing the last 50-60 years of climate changes in Arctic and Subarctic Yakutia, we have identified three distinct periods of climate development. The cold (1965-1987), pre-warming (1988-2004), and modern warming (2005-2023) periods are clearly identifiable. Yakutia's Arctic and Subarctic regions have experienced mean annual air temperature increases of 2.5 degrees C and 2.2 degrees C, respectively, compared to the cold period. The thawing index rose by an average of 171-214 degrees C-days, while the freezing index dropped by an average of 564-702 degrees C-days. During the pre-warming period, all three characteristics show a minor increase in warmth. Global warming intensified between 2005 and 2023, resulting in elevated permafrost temperatures and a deeper active layer. Monitoring data from the Tiksi site show that warming has been increasing at different depths since the mid-2000s. As a result, the permafrost temperature increased by 1.7 degrees C at a depth of 10 m and by 1.1 degrees C at a depth of 30 m. Soil temperature measurements at meteorological stations and observations at CALM sites both confirm the warming of the permafrost. A permafrost-climatic zoning study was conducted in Arctic and Subarctic Yakutia. Analysis identified seven regions characterized by similar responses to modern global warming. These study results form the foundation for future research on global warming's effects on permafrost and on how northern Yakutia's environment and economy adapt to the changing climate.

期刊论文 2024-12-01 DOI: 10.3390/land13122150

Together with warming air temperatures, Arctic ecosystems are expected to experience increases in heavy rainfall events. Recent studies report accelerated degradation of permafrost under heavy rainfall, which could put significant amounts of soil carbon and infrastructure at risk. However, controlled experimental evidence of rainfall effects on permafrost thaw is scarce. We experimentally tested the impact and legacy effect of heavy rainfall events in early and late summer for five sites varying in topography and soil type on the High Arctic archipelago of Svalbard. We found that effects of heavy rainfall on soil thermal regimes are small and limited to one season. Thaw rates increased under heavy rainfall in a loess terrace site, but not in polygonal tundra soils with higher organic matter content and water tables. End-of-season active layer thickness was not affected. Rainfall application did not affect soil temperature trends, which appeared driven by timing of snowmelt and organic layer thickness, particularly during early summer. Late summer rainfall was associated with slower freeze-up and colder soil temperatures the following winter. This implies that rainfall impacts on Svalbard permafrost are limited, locally variable and of short duration. Our findings diverge from earlier reports of sustained increases in permafrost thaw following extreme rainfall, but are consistent with observations that maritime permafrost regions such as Svalbard show lower rainfall sensitivity than continental regions. Based on our experiment, no substantial in-situ effects of heavy rainfall are anticipated for thawing of permafrost on Svalbard under future warming. However, further work is needed to quantify permafrost response to local redistribution of active layer flow under natural rainfall extremes. In addition, replication of experiments across variable Arctic regions as well as long-term monitoring of active layers, soil moisture and local climate will be essential to develop a panarctic perspective on rainfall sensitivity of permafrost. permafrost are limited, locally variable and of short duration. Our findings diverge from earlier reports tained increases in permafrost thaw following extreme rainfall, but are consistent with observations time permafrost regions such as Svalbard show lower rainfall sensitivity than continental regions. Based experiment, no substantial in-situ effects of heavy rainfall are anticipated for thawing of permafrost on under future warming. However, further work is needed to quantify permafrost response to local redistribution active layer flow under natural rainfall extremes. In addition, replication of experiments across variable regions as well as long-term monitoring of active layers, soil moisture and local climate will be essential develop a panarctic perspective on rainfall sensitivity of permafrost.

期刊论文 2024-09-15 DOI: 10.1016/j.scitotenv.2024.173696 ISSN: 0048-9697

In order to foresee the impact of permafrost thaw on CO2 emissions by high-latitude rivers, in-situ measurements across a permafrost and climate/vegetation gradient, coupled with assessment of possible physico-chemical and landscape controlling factors are necessary. Here we chose 34 catchments of variable stream order (1 to 9) and watershed size (1 to >10(5) km(2)) located across a permafrost and biome gradient in the Western Siberian Lowland (WSL), from the permafrost-free southern taiga to the continuous permafrost zone of tundra. Across the southnorth transect, maximal CO2 emissions (2.2 +/- 1.1 g C-CO2 m(-2) d(-1)) occurred from rivers of the discontinuous/sporadic permafrost zone, i.e., geographical permafrost thawing boundary. In this transitional zone, fluvial C emission to downstream export ratio was as high as 8.0, which greatly (x 10) exceeded the ratio in the permafrost free and continuous permafrost zones. Such a high evasion at the permafrost thawing front can stem from an optimal combination of multiple environmental factors: maximal active layer thickness, sizable C stock in soils, and mobilization of labile organic nutrients from dispersed peat ice that enhanced DOC and POC processing in the water column, likely due to priming effect. Via a substituting space for time approach, we foresee an increase in CO2 and CH4 fluvial evasion in the continuous and discontinuous permafrost zone, which is notably linked to the greening of tundra increases in biomass of the riparian vegetation, river water warming and thermokarst lake formation on the watershed.

期刊论文 2024-08-01 DOI: 10.1016/j.scitotenv.2024.173491 ISSN: 0048-9697

Quantifying the impact of landscape on hydrological variables is essential for the sustainable development of water resources. Understanding how landscape changes influence hydrological variables will greatly enhance the understanding of hydrological processes. Important vegetation parameters are considered in this study by using remote sensing data and VIC-CAS model to analyse the impact of landscape changes on hydrology in upper reaches of the Shule River Basin (URSLB). The results show there are differences in the runoff generation of landscape both in space and time. With increasing altitude, the runoff yields increased, with approximately 79.9% of the total runoff generated in the high mountains (4200-5900 m), and mainly consumed in the mid-low mountain region. Glacier landscape produced the largest runoff yields (24.9% of the total runoff), followed by low-coverage grassland (LG; 22.5%), alpine cold desert (AL; 19.6%), mid-coverage grassland (MG; 15.6%), bare land (12.5%), high-coverage grassland (HG; 4.5%) and shrubbery (0.4%). The relative capacity of runoff generation by landscapes, from high to low, was the glaciers, AL, LG, HG, MG, shrubbery and bare land. Furthermore, changes in landscapes cause hydrological variables changes, including evapotranspiration, runoff and baseflow. The study revealed that HG, MG, and bare land have a positive impact on evapotranspiration and a negative impact on runoff and baseflow, whereas AL and LG have a positive impact on runoff and baseflow and a negative impact on evapotranspiration. In contrast, glaciers have a positive impact on runoff. After the simulation in four vegetation scenarios, we concluded that the runoff regulation ability of grassland is greater than that of bare land. The grassland landscape is essential since it reduced the flood peak and conserved the soil and water.

期刊论文 2023-11-01 DOI: http://dx.doi.org/10.1002/hyp.14392 ISSN: 0885-6087

There is an increased awareness that the biogeochemical cycling at high latitudes will be affected by a changing climate. However, because biogeochemical studies most often focus on a limited number of elements (i.e., C, P and N) we lack baseline conditions for many elements. In this work, we present a 42-element mass-balance budget for lake dominated catchment in West Greenland. By combining site specific concentration data from various catchment compartments (precipitation, active layer soils, groundwater, permafrost, lake water, lake sediments and biota) with catchment geometries and hydrological fluxes from a distributed hydrological model we have assessed present-day mobilization, transport and accumulation of a whole suite of elements with different biogeochemical behavior. Our study shows that, under the cold and dry conditions that prevails close to the inland ice-sheet: i) eolian processes are important for the transport of elements associated with mineral particles (e.g., Al, Ti, Si), and that these elements tend to accumulate in the lake sediment, ii) that even if weathering rates are slowed down by the dry and cold climate, weathering in terrestrial soils is an important source for many elements (e.g., lanthanides), iii) that the cold and dry conditions results in an accumulation of elements supplied by wet deposition (e.g., halogens) in both terrestrial soils and the lake-water column, and iv) that lead and sulfur from legacy pollution are currently being released from the terrestrial system. All these processes are affected by the climate, and we can therefore expect that the cycling of the majority of the 42 studied elements will change in the future. However, it is not always possible to predict the direction of this change, which shows that more multi-element biogeochemical studies are needed to increase our understanding of the consequences of a changing climate for the Arctic environment.

期刊论文 2023-10-01 DOI: 10.1016/j.catena.2023.107311 ISSN: 0341-8162

Most lakes on the Qinghai-Tibet Plateau have expanded in recent years. Zonag lake, a critical habitat for Tibetan antelopes in the continuous permafrost zone, burst and overflowed after several years of expansion, resulting in a reduction of approximately 100 km(2) in the lake area. Observations have revealed new permafrost is forming on the exposed bottom, accompanied by various periglacial landscapes. The permafrost aggradation on the exposed bottom is rapid, and the permafrost base reached 4.9 m, 5.4 m, and 5.7 m in the first three years, respectively. In this study, the future changes and influencing factors of recently formed permafrost are simulated using a one-dimensional finite element model of heat flow. The simulated results indicate that the permafrost on the exposed bottom is likely to continue to develop, appearing first quick back slow trend. Besides the surface temperature, the annual amplitude is also an important factor in affecting the aggradation of permafrost. The unidirectional permafrost aggradation in the study area is different from the bidirectional permafrost aggradation on the closed taliks around the Arctic. Additionally, snow cover and vegetation are two important factors influencing the future development of permafrost on the exposed lake bottom.

期刊论文 2023-01-01 DOI: http://dx.doi.org/10.1016/j.scitotenv.2021.152879 ISSN: 0048-9697

Permafrost in the NE European Russian Arctic is suffering from some of the highest degradation rates in the world. The rising mean annual air temperature causes warming permafrost, the increase in the active layer thickness (ALT), and the reduction of the permafrost extent. These phenomena represent a serious risk for infrastructures and human activities. ALT characterization is important to estimate the degree of permafrost degradation. We used a multidisciplinary approach to investigate the ALT distribution in the Khanovey railway station area (close to Vorkuta, Arctic Russia), where thaw subsidence leads to railroad vertical deformations up to 2.5 cm/year. Geocryological surveys, including vegetation analysis and underground temperature measurements, together with the faster and less invasive electrical resistivity tomography (ERT) geophysical method, were used to investigate the frozen/unfrozen ground settings between the railroad and the Vorkuta River. Borehole stratigraphy and landscape microzonation indicated a massive prevalence of clay and silty clay sediments at shallow depths in this area. The complex refractive index method (CRIM) was used to integrate and quantitatively validate the results. The data analysis showed landscape heterogeneity and maximum ALT and permafrost thickness values of about 7 and 50 m, respectively. The active layer was characterized by resistivity values ranging from about 30 to 100 omega m, whereas the underlying permafrost resistivity exceeded 200 omega m, up to a maximum of about 10 k omega m. In the active layer, there was a coexistence of frozen and unfrozen unconsolidated sediments, where the ice content estimated using the CRIM ranged from about 0.3 - 0.4 to 0.9. Moreover, the transition zone between the active layer base and the permafrost table, whose resistivity values ranged from 100 to 200 omega m for this kind of sediments, showed ice contents ranging from 0.9 to 1.0. Taliks were present in some depressions of the study area, characterized by minimum resistivity values lower than 10 omega m. This thermokarst activity was more active close to the railroad because of the absence of insulating vegetation. This study contributes to better understanding of the spatial variability of cryological conditions, and the result is helpful in addressing engineering solutions for the stability of the railway.

期刊论文 2022-07-26 DOI: 10.3389/feart.2022.910078

Vegetation patch patterns, which are used as indicators of state, functionality, and catastrophic changes in the arid ecosystem, have received much attention. However, little is known about the controlling factors and indicators that underlie vegetation patch patterns in the alpine grassland ecosystem. Here, we firstly studied characteristics of vegetation patch patterns with aerial photography by using an unmanned aerial vehicle and evaluated the vegetation patch-size distribution with power law (PL) and truncated power law (TPL) models on the central part of the Qinghai-Tibetan Plateau (QTP). We then investigated the effects of environmental factors and biotic disturbances on vegetation patch patterns. The results showed that (1) there were four typical vegetation patch patterns, i.e. spot, stripe, sheet, and uniform patterns; (2) soil water content and air temperature were major environmental factors affecting vegetation patch patterns; (3) biotic disturbance of plateau pika (Ochotona curzoniae) affected vegetation patch patterns by changing the number, area, and connectivity of vegetation patches; and (4) vegetation patch-size distribution parameters were significantly related to soil hydrothermal variables (P < 0.01). We concluded that the development of alpine vegetation patch patterns was controlled by soil hydrothermal conditions and plateau pika's disturbance. We also proposed that gamma (TPL-PL) (difference between absolute values of slopes of TPL and PL curve fits) could serve as an effective indicator for monitoring alpine grassland conditions, and preventing patchiness was a critical task for the alpine ecosystem management and restoration.

期刊论文 2022-07-25 DOI: http://dx.doi.org/10.1016/j.ecolind.2021.107570 ISSN: 1470-160X
  • 首页
  • 1
  • 2
  • 3
  • 末页
  • 跳转
当前展示1-10条  共26条,3页