共检索到 2

With rapid urbanization, environmental problems such as soil erosion and resource shortages have emerged. Ecological environmental quality is decreasing, and ecological security issues are becoming increasingly prominent; thus, relevant research is particularly urgent. The ecological security issue is complex due to many influencing factors. The transformation of landscape type is the most important factor affecting ecological security. Therefore, there is an urgent need to optimize and screen for the indicator factors that affect ecological security, carry out a dynamic evaluation of ecological security based on landscape pattern analysis, and analyze the driving forces behind ecological security changes. Song County is located in the ecological core area of the Funiu Mountains in western Henan, with complex topography and geomorphology; large changes in landscape patterns in recent years; frequent geological disasters, which have posed a greater threat to people's life and property safety; and significant ecological security problems. This paper takes Song County as the research area, using the decision tree model to obtain the land use classification results of four periods in Song County in 2005, 2010, 2015, and 2020 based on remote sensing images. Landscape pattern analysis is conducted from two aspects: patch level and landscape level. On this basis, ecological security evaluation indicators are constructed from three levels: pressure, state, and response, and the comprehensive index model is used to obtain the results of four ecological security evaluations. Exploratory spatial data analysis (ESDA) is used to conduct research and prediction on spatiotemporal differentiation. Finally, the spatial heterogeneity relationship between the ecological security level and its driving factors in Song County is quantitatively analyzed using a geographic detector model. The results clearly show that the overall landscape form gradually tends to develop in the direction of complex irregularity. Due to frequent geological disasters and strong human engineering activities near the core areas of the Luhun Reservoir and Yi River basin, as well as Baihejie Village in Baihe Township and Che Village in Muzhijie Township, the landscape pattern is changing considerably. The self-restoration ability of the land's ecosystem is gradually weakening, and the degree of ecological damage is gradually accelerating. The ecological security level is unsafe, the area of unsafe security is gradually increasing, and the ecological security index (ESI) will continue to decrease in the future. To improve ecological security, we recommend paying attention to land conservation and rational utilization while pursuing economic development.

期刊论文 2024-06-01 DOI: 10.3390/ijgi13060204

Urbanization and agricultural land use have led to water quality deterioration. Studies have been conducted on the relationship between landscape patterns and river water quality; however, the Wuding River Basin (WDRB), which is a complex ecosystem structure, is facing resource problems in river basins. Thus, the multi-scale effects of landscape patterns on river water quality in the WDRB must be quantified. This study explored the spatial and seasonal effects of land use distribution on river water quality. Using the data of 22 samples and land use images from the WDRB for 2022, we quantitatively described the correlation between river water quality and land use at spatial and seasonal scales. Stepwise multiple linear regression (SMLR) and redundancy analyses (RDA) were used to quantitatively screen and compare the relationships between land use structure, landscape patterns, and water quality at different spatial scales. The results showed that the sub-watershed scale is the best spatial scale model that explains the relationship between land use and water quality. With the gradual narrowing of the spatial scale range, cultivated land, grassland, and construction land had strong water quality interpretation abilities. The influence of land use type on water quality parameter variables was more distinct in rainy season than in the dry season. Therefore, in the layout of watershed management, reasonably adjusting the proportion relationship of vegetation and artificial building land in the sub-basin scale and basin scope can realize the effective control of water quality optimization.

期刊论文 2024-03-01 DOI: 10.1007/s11356-024-32429-4 ISSN: 0944-1344
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页