共检索到 2

The frequent occurrence of earthquakes worldwide has rendered highway slope protection projects highly vulnerable to damage from seismic events and their secondary disasters. This severely hampers the smooth implementation of post-disaster rescue and recovery efforts. To address this challenge, this study proposes a comprehensive method for assessing seismic losses in slope protection projects, incorporating factors such as topography and elevation to enhance its universality. The method categorizes seismic losses into two main components: damage to protection structures and costs associated with landslide and rockfall clearance and transportation. This study estimates the cost range for common protection structures and clearance methods under general conditions based on widely recognized quota data in China. It establishes criteria for classifying the damage states of protection structures and provides loss ratio values based on real-world seismic examples and expert experience, constructing a model for assessing damage losses. Additionally, by summarizing the geometric characteristics of soil and rock accumulations on road surfaces, a method for estimating landslide volumes is proposed, considering the dynamic impact of slope gradients on clearance and transportation volumes, and a corresponding cost assessment model for clearance and transportation is developed. The feasibility and reliability of the proposed method are verified through two case studies. The results demonstrate that the method is easy to implement and provides a scientific basis for improving relevant standards and practices. It also offers an efficient and scientific tool for loss assessment to industry practitioners.

期刊论文 2025-10-01 DOI: 10.1016/j.soildyn.2025.109524 ISSN: 0267-7261

Landslide volume plays a pivotal role in controlling landslide movement and potential damage. Although rainfall is widely recognized as one of the most important factors underlying landslide occurrence worldwide, its impact on landslide volume has been investigated only for individual landslide types. In this study, we show that rainfall characteristics and magnitude control the volume produced by both shallow and deep-seated landslides. A total of ten shallow and deep-seated landslides in Japan were compiled with volume, occurrence time, and rainfall data. Rainfall characteristics that triggered landslides were identified using the Soil Water Index and the threelayer tank model, which is a simple runoff model, and magnitude was quantified based on lag time. A strong positive correlation was found between lag time and landslide volume, indicating that landslide volume increases with increasing magnitude of rainfall to induce landslides. This study is the first attempt to suggest a relationship between rainfall magnitude and the volume produced by shallow and deep-seated landslides systematically and will promote the development of landslide risk management strategies.

期刊论文 2024-12-01 DOI: 10.1016/j.geomorph.2024.109453 ISSN: 0169-555X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页