共检索到 2

Two emerging challenges that could impede infrastructure development in India are achieving 100% utilization of fly ash generated by Indian thermal power plants and meeting the demand for aggregate in the construction sector. The paper discusses the engineering properties and performance of a novel angular-shaped fly ash aggregate (AFA) as a complete replacement for natural stone aggregate in wet-mix macadam (WMM) layer of pavement through laboratory investigation. After curing fly ash blocks in a hot water bath or autoclave, the high-strength blocks were crushed to produce AFA of the required sizes. The study used 98% Class C fly ash with 2% lime mix and 88% Class F fly ash with 12% lime mix for manufacturing two types of AFA in the laboratory. The properties of AFA, such as specific gravity, angularity number, water absorption, impact value, crushing value, abrasion value, and soundness, were compared with the required specifications given in the relevant Indian standards. Compaction characteristics, particle breakage, slake durability and leachability of AFA, were also investigated. The performance of AFA under cyclic and shear loading was investigated using cyclic triaxial tests and large box direct shear tests, respectively. AFA was found to be well-graded before and after the compaction. The results of the slake durability tests showed that AFA performs well even when subjected to severe wet and dry conditions. AFA exhibited resilient modulus (Mr) value of 129.1 to 149.7 MPa and internal friction angle of 42.73 degrees to 50.75 degrees. Based on the cyclic triaxial and shear test results, it was found that replacing natural aggregate with AFA in the WMM layer has satisfactory performance under traffic and shear loading. The results of leachate test showed that the AFA is safe for the environment. Depending on the type of fly ash used, the approximate production cost of AFA was estimated to be 16% to 65% lower than the cost of natural aggregate.

期刊论文 2024-12-01 DOI: 10.1061/JMCEE7.MTENG-18052 ISSN: 0899-1561

This paper is dedicated to examining the impact of fine particles, specifically stone dust (passing 600 microns), on the shear strength, friction angle, and dilation angle of a subbase mix. To assess these properties, a large-scale direct shear test employing a 300 mm x 300 mm x 230 mm box was conducted. The subbase mix consisted of well-graded aggregate with varying proportions of fines, ranging from 1 to 15% by mass of the mix. The direct shear test was performed at 49.03 kPa, 98.06 kPa, 147.10 kPa and 196.13 kPa of normal stress across different densities. The findings revealed that the inclusion of 15% fine particles in the mix led to an 18% reduction in the friction angle for the loose mix and a 10% reduction for the compacted mix. Notably, the friction angle of the subbase mix proved to be influenced by factors such as normal stress, density, void ratio, and stone dust content. In compacted subbase mixes, the friction angle was predominantly influenced by variations in the mix's void ratio. The average dilation angle was determined to be 7.73 degrees for the loose mix and 16.36 degrees for the compacted mix. The analysis indicated that alterations in the dilation angle were impacted by normal stress, density, and the mean grain size of the mix. Furthermore, statistical analysis underscored the significant influence of the proportion of stone dust particles on the peak shear stress of the subbase mix. These findings collectively contribute to a comprehensive understanding of how fine particles, specifically stone dust, affect crucial mechanical properties in subbase mixes.

期刊论文 2024-06-01 DOI: 10.1007/s40891-024-00565-z ISSN: 2199-9260
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页