A series of large-scale (1:13) model tests of multi-stage loading and unidirectional multi-cycle loading were conducted on semi-rigid piles before and after cement-soil reinforcement in clay. The difference of ultimate bearing capacity between unreinforced and reinforced piles under different criterions is discussed, and their bending moment and displacement distribution rules are revealed. Meanwhile, the cyclic bearing behaviour of the unreinforced and reinforced piles are compared and analyzed, including cyclic load-displacement response, unloading stiffness, cumulative peak & residual displacement, peak & locked in moment. The test results show that the ultimate bearing capacity of the large diameter pile is increased by 34.4 % and the initial stiffness is increased by 56.8 % (reinforced width is 3D and depth is 1D) in the multistage loading test. Comparing the monotonic and cyclic load-displacement curves of unreinforced and reinforced piles obtained by multi-stage loading test and unidirectional multi-cycle loading test respectively, it is found that when the applied load is small, the curve obtained from multistage loading test is almost coincident with the first cycle envelope of all load levels in 1-way multi-cycle loading test, indicating that the cyclic effect is not significant. As the load increases, the difference between the curves becomes larger, indicating that the cyclic loading of higher amplitude causes greater soil disturbance. In addition, after applying cement-soil to the shallow soil around monopile, cement-soil reinforced pile exhibits a more rigid response, specifically manifested as an initial unloading stiffness of 1.76 times that of unreinforced pile, and a slower stiffness degradation rate. Meanwhile, the cyclic peak displacement & residual displacement accumulation of reinforced piles are smaller than that of the unreinforced pile, thereby reducing the development of the locked in moment.
Based on a prototype of the Beijing subway tunnel, this research conducts large-scale model experiments to systematically investigate the vibration response patterns of tunnels with different damage levels under the influence of measured train loads. Initially, the polynomial fitting modal identification method (Levy) and the model test preparation process are introduced. Then, using time-domain peak acceleration, frequency response function, frequency-domain modal frequency, and modal shape indicators, a detailed analysis of the tunnel's dynamic response is conducted. The results indicate that damage significantly amplifies vibration acceleration, with the amplification increasing with the severity of the damage. When the crack lengths are 2 cm, 4 cm, and 6 cm, the peak acceleration increases by 25.12%, 36.35%, and 50.29%, respectively, while adjacent segments show increases of 13%, 29%, and 45%. Damage decreases the tunnel structure's modal frequency, with the first two modal frequencies showing the most significant reductions of 9.87% and 7.34%, respectively. The adjacent segments show reductions of 7.7% and 4.2%. As the severity of the damage increases, the amplitude of the modal shape at the damaged location also increases, with the first modal shape rising by 43.37% for 4 cm damage compared to 2 cm damage and by 72.21% for 6 cm damage. The second modal shape increases by 9.04% and 26.51%, respectively. Additionally, the effectiveness of the polynomial fitting modal identification method (Levy) for tunnel structural damage detection was validated. Finally, based on the methods outlined above, the tunnel responses measured on-site in the Beijing metro were also analyzed. The findings of this study provide important theoretical support for the assessment and routine maintenance of metro tunnels.
The polyurethane foam (PU) compressible layer is a viable solution to the problem of damage to the secondary lining in squeezing tunnels. Nevertheless, the mechanical behaviour of the multi-layer yielding supports has not been thoroughly investigated. To fill this gap, large-scale model tests were conducted in this study. The synergistic load-bearing mechanics were analyzed using the convergenceconfinement method. Two types of multi-layer yielding supports with different thicknesses (2.5 cm, 3.75 cm and 5 cm) of PU compressible layers were investigated respectively. Digital image correlation (DIC) analysis and acoustic emission (AE) techniques were used for detecting the deformation fields and damage evolution of the multi-layer yielding supports in real-time. Results indicated that the loaddisplacement relationship of the multi-layer yielding supports could be divided into the crack initiation, crack propagation, strain-hardening, and failure stages. Compared with those of the stiff support, the toughness, deformability and ultimate load of the yielding supports were increased by an average of 225%, 61% and 32%, respectively. Additionally, the PU compressible layer is positioned between two primary linings to allow the yielding support to have greater mechanical properties. The analysis of the synergistic bearing effect suggested that the thickness of PU compressible layer and its location significantly affect the mechanical properties of the yielding supports. The use of yielding supports with a compressible layer positioned between the primary and secondary linings is recommended to mitigate the effects of high geo-stress in squeezing tunnels. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface. Conventional slope protection methods for bedding slopes, such as retaining walls, stabilizing piles, and anchors, are time-consuming and labor- and energy-intensive. This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes. A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes. Specifically, load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer. Results show the great potential of polymer grout in improving bearing capacity, reducing settlement, and protecting slopes from being crushed under shearing. The polymer-treated slopes remained structurally intact, while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity. It is also found that polymer-cemented soils concentrate around the injection pipe, forming a fan-shaped sheet-like structure. This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides.