共检索到 30

Frequent road collapses caused by water leakages from pipelines pose a severe threat to urban safety and the wellbeing of city residents. Limited research has been conducted on the relationship between pipeline leakage and soil settlement, thus resulting in a lack of mathematical models that accurately describe the soil settlement process resulting from water erosion. In this study, we developed an equation for pipeline leakage, conducted physical model experiments on road collapses induced by drainage pipeline leakage, investigated the functional relationship between drainage pipeline leakage and soil settlement, and validated this relationship through physical experiments with pipelines of various sizes. The results indicated that drainage pipeline leakage triggered internal erosion and damaged the soil layers in four stages: soil particle detachment, seepage channel formation, void development, and road collapse. When the pipeline size was increased by a factor of 1.14, the total duration of road collapse induced by pipeline leakage increased by 20.78%, and the total leakage water volume increased by 33.5%. The Pearson correlation coefficient between the theoretical and actual settlement exceeded 0.9, thus demonstrating the reasonableness and effectiveness of the proposed settlement calculation method. The findings of this study serve as a basis for monitoring soil settlement and issuing early road collapse warnings.

期刊论文 2025-08-01 DOI: 10.1061/NHREFO.NHENG-2282 ISSN: 1527-6988

The nonlinear mechanical behaviour of pipeline joints influences the seismic response of water supply pipelines. This study presents an experimental investigation of the tensile behaviour of push-on joints of ductile iron (DI) pipelines, subjected to axial tensile forces and internal water pressure. The axial performance and damage states of joints are determined for push-on joints with different diameters. A statistical analysis is then conducted to determine the correlation between tensile strength and joint opening. An empirical equation for estimating the tensile strength of pipeline joints is proposed, along with a normalized failure criterion for joint opening considering water leakage. Moreover, a numerical model for buried pipelines considering nonlinear soil-pipe interaction is developed. Incremental dynamic analysis (IDA) is performed on DI pipelines with explicit consideration of the uncertainty of joint mechanical properties. Seismic fragility curves are developed based on the IDA results. The effect of mechanical parameter uncertainty of pipeline joints on seismic risk assessment of segmented pipelines is quantitatively evaluated. The numerical results indicated that the failure probability of the pipeline considering the uncertainty of joint mechanical properties is approximately 1.5 to 2 times larger than that predicted by a deterministic model.

期刊论文 2025-08-01 DOI: 10.1016/j.tust.2025.106667 ISSN: 0886-7798

The leakage of drainage pipes is the primary cause of underground cavity formation, and the cavity diameter-to-depth ratio significantly affects the overall stability of roads. However, studies on the quantitative calculation for road comprehensive bearing capacity considering the cavity diameter-to-depth ratio have not been extensively explored. This study employed physical model tests to examine the influence of the cavity diameter-to-depth ratio on road collapse and soil erosion characteristics. Based on limit analysis theorems, a mechanical model between the road comprehensive bearing capacity and the cavity diameter-to-depth ratio (FB-L model) was established, and damage parameters of the pavement and soil layers were introduced to modify the FB-L model. The effectiveness of the FB-L model was validated by the data derived from eight physical model tests, with an average deviation of 14.0%. The results indicate a nonlinear increase in both the maximum diameter and fracture thickness of the collapse pit as the cavity diameter-to-depth ratio increased. The pavement and soil layers adjusted the diameter and fracture thickness of the collapse pit to maintain their load-bearing capacity when the cavity diameter-to-depth ratio changed. The fluid erosion range increased continuously with increasing depth of buried soil and was influenced predominantly by gravity and seepage duration. Conversely, the cavity diameter decreased as the buried depth increased, which is associated with the rheological repose angle of the soil. Furthermore, the damage parameters of the pavement and soil layers decrease as the distance from the collapse pit diminishes, with the pavement exhibiting more severe damage than the soil layer. This study provides a theoretical basis for preventing road collapses.

期刊论文 2025-07-01 DOI: 10.1061/IJGNAI.GMENG-10675 ISSN: 1532-3641

Currently, studies on the permeability evolution characteristics of overlying aquiclude protective layers caused by coal mining focus on single lithological protective layers and assume the permeability coefficient remains constant. However, these studies fail to consider the variation characteristics of the combination protective layer structure and permeability coefficient. Therefore, an analytical method is proposed to study coal seam leakage under mining conditions in the blown-sand beach region based on the structure and permeability coefficient of the combination protective layer. First, the stress path of the overlying combination aquiclude under coal mining disturbance is comprehensively considered. Based on this, triaxial loading and unloading seepage creep experiments are conducted with different proportions of overlying combination aquiclude. The analytical relationship between the permeability coefficient of the samples and loess proportion, stress level, and soil depth in the stress recovery stage is determined, leading to the establishment of a creep permeability coefficient evolution model for the overlying combination aquiclude of the coal seam under the stress path of coal mining. Second, the creep permeability coefficient evolution model is integrated with a fusion algorithm in COMSOL numerical simulation software. Numerical simulations are then performed to examine the evolution law of phreatic leakage during coal seam mining and recovery, revealing a relationship curve in which leakage gradually decreases over time before stabilizing in the post-mining recovery stage. Finally, based on mathematical and statistical methods, a phreatic leakage evolution model is developed for both mining and post-mining stages to provide a theoretical basis for environmental protection.

期刊论文 2025-06-01 DOI: 10.1007/s10064-025-04312-0 ISSN: 1435-9529

Activated coke waste (ACW), a byproduct of industrial desulfurization and denitrification, consists of fine particles ( Na+ > Cl-. Isothermal adsorption analysis revealed that Na+ and Cl- adsorption aligned with the Langmuir model, whereas SO42- adsorption adhered to the Freundlich model. Application of SACW (>= 10 g kg(-1)) effectively improved saline-alkali soil properties by lowering pH and salinity, enhancing soil aggregate stability, and promoting nutrient utilization efficiency. Notably, SACW-treated soils supported maize plants with significantly increased height and biomass (13.94% and 159.28% higher, respectively; P <= 0.05) compared to untreated controls. These benefits stemmed from improved nutrient availability and reduced salt stress-induced plasma membrane damage. These findings validate SACW as a sustainable, functional amendment for reclaiming saline-alkali ecosystems and boosting crop productivity.

期刊论文 2025-06-01 DOI: 10.1007/s11270-025-07977-1 ISSN: 0049-6979

The laying of the underground pipeline in the same ditch has caused great challenges to the attractive transportation mode of hydrogen mixed with natural gas pipeline in service. The tendency to damage of hydrogen to steel increases the possibility of flammable and explosive gas entering underground engineering significantly. A leakage monitoring method for buried hydrogen-doped natural gas pipeline based on vibration signals with machine learning is proposed. Firstly, the distributed vibration sensor captures the multisource vibration signals propagating in the soil. An optimal combination of wavelet basis functions, decomposition level, and threshold parameters is selected carefully for signal denoising and accurate extraction of leakage-generated signals. Then the characteristics extracted in different frequency bands are investigated with other influencing factors, including the hydrogen-doping ratio, which affects the propagation speed of the pressure wave. The unique characteristics of vibration signal generated by pipeline leakage are extracted. On this basis, combined with the high efficiency of machine learning recognition model, a leakage monitoring model for buried hydrogen-doped natural gas pipeline is established, which achieves a 2.01 % false alarm rate at a maximum positioning distance of 70 cm. It has been successfully applied to the leak detection and location of buried hydrogen-doped natural gas pipelines, which can significantly improve the safety and reliability of underground pipeline system engineering.

期刊论文 2025-05-23 DOI: 10.1016/j.ijhydene.2025.04.378 ISSN: 0360-3199

In soft soil regions, the construction of irregular-shaped excavations can readily disturb the underlying soft clay, leading to alterations in soil properties that, in turn, cause significant deformations of the excavation support structure. These deformations can compromise both the excavation's stability and the surrounding environment. Based on a large-scale, irregular-shaped excavation project for an underground interchange in a soft soil area, numerical simulations were performed using Midas GTS to analyze the overall foundation pit deformationn. The study explored the effects of groundwater lowering, excavation, and local seepage on the disturbance of surrounding soils and the resulting foundation pit deformationn. The findings reveal that the irregular-shaped excavation exhibits distinctive spatial deformation characteristics, with the arcuate retaining structure's arching effect reducing the diaphragm wall's horizontal displacement. Groundwater lowering exerts a stronger disturbance on shallow soils near the excavation and a weaker disturbance on deeper soils. Excavation-induced stress redistribution notably affects the soils above the excavation surface and those within the embedded region of the support structure. Local seepage primarily disturbs the soils surrounding the leakage point. Additionally, the weakening of soil parameters significantly influences the foundation pit deformationn. Combined disturbance (dewatering + excavation + leakage) induced 32%, 45%, and 58% greater displacements compared to individual factors, confirming the critical role of multi-factor coupling effects.

期刊论文 2025-05-14 DOI: 10.3389/feart.2025.1532635

We study CO2 injection into a saline aquifer intersected by a tectonic fault using a coupled modeling approach to evaluate potential geomechanical risks. The simulation approach integrates the reservoir and mechanical simulators through a data transfer algorithm. MUFITS simulates non-isothermal multiphase flow in the reservoir, while FLAC3D calculates its mechanical equilibrium state. We accurately describe the tectonic fault, which consists of damage and core zones, and derive novel analytical closure relations governing the permeability alteration in the fault zone. We estimate the permeability of the activated fracture network in the damage zone and calculate the permeability of the main crack in the fault core, which opens on asperities due to slip. The coupled model is applied to simulate CO2 injection into synthetic and realistic reservoirs. In the synthetic reservoir model, we examine the impact of formation depth and initial tectonic stresses on geomechanical risks. Pronounced tectonic stresses lead to inelastic deformations in the fault zone. Regardless of the magnitude of tectonic stress, slip along the fault plane occurs, and the main crack in the fault core opens on asperities, causing CO2 leakage out of the storage aquifer. In the realistic reservoir model, we demonstrate that sufficiently high bottomhole pressure induces plastic deformations in the near-wellbore zone, interpreted as rock fracturing, without slippage along the fault plane. We perform a sensitivity analysis of the coupled model, varying the mechanical and flow properties of the storage layers and fault zone to assess fault stability and associated geomechanical risks. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

期刊论文 2025-04-01 DOI: 10.1016/j.jrmge.2024.04.016 ISSN: 1674-7755

Leakage is a prevalent latent hazard in earth-rock dams. Accurate detection of the location and severity of leakage areas can provide the basis for treating leakage and reducing the damage to the dam. The key to detecting leakage using seismic wave methods is mastering the response characteristics of leakage reflection wavefields and accurately identifying them from the acquired seismic data. In this study, the dam models with different water content leakage areas are established using discrete random modeling method, based on the soil-rock mixture characteristics of the actual dam media. The effects of water content changes on the leakage reflected wavefields are elaborated, and the seismic attributes that can effectively identify leakage wavefields are summarized. Scattering caused by the heterogeneity of the earth-rock dam reduces the energy of leakage reflected waves and complicates the identification of the leakage wavefields. The characteristics of leakage converted waves, primarily low-frequency signals, are more advantageous for identifying leakage wavefields. With the decrease of water content in the leakage area, the energy of converted waves gradually weakens, and the continuity of the phase axis deteriorates. Wavelet transform can enhance the continuity of the leakage reflected phase axis and effectively suppress random noise interference. The combined use of instantaneous frequency and wavelet transform frequency slice allows for more accurate identification of leakage-reflected wavefields.

期刊论文 2025-04-01 DOI: 10.1007/s10064-025-04199-x ISSN: 1435-9529

With the rapid advancement of rail transit, shield tunnels have been extensively constructed worldwide. However, leakage at the shield tail can lead to severe consequences, including shield machine subsidence, structural damage to the tunnel, or even catastrophic tunnel collapse. Research on tunnel collapse induced by shield tail leakage remains in its infancy. The mechanisms underlying such accidents are not yet fully understood by researchers and engineers, and effective preventive measures have yet to be developed. In this study, a reducedscale model test was conducted to investigate the processes and mechanisms of tunnel collapse induced by shield tail leakage. The findings reveal that tunnel collapse is primarily triggered by the impact loads generated from the destabilized soil cave. The soil cave, formed due to erosion caused by leakage, propagates upward in a cycle of destabilization and regeneration until the ground surface collapses, resulting in load redistribution around the tunnel. Additionally, the study compares tunnel collapses induced by shield tail leakage and connecting passage leakage, highlighting that while both share similar collapse mechanisms, their boundary conditions differ. The coupling effect between the tunnel structure and surrounding soil is more pronounced in shield tail leakage, leading to more intense load fluctuations and greater structural damage to the tunnel.

期刊论文 2025-03-01 DOI: 10.1016/j.tust.2025.106374 ISSN: 0886-7798
  • 首页
  • 1
  • 2
  • 3
  • 末页
  • 跳转
当前展示1-10条  共30条,3页