共检索到 2

In recent years, a great number of studies has been carried out in urban cities regarding urban particulate matter (PM) pollution in China, especially in eastern China. Lhasa, the capital of the Tibet Autonomous Region in western China, is the highest (3650 m a.s.l.) city in China and has notably different lifestyles and PM sources comparing with those in eastern China. However, there is currently a lack of studies on PM pollution in this city. In this study, an Aerodyne high-resolution time-of-flight aerosol mass spectrometer was deployed along with other co-located instruments to explore the chemical characterization of ambient submicron PM (PM1) in Lhasa from 31 August 2019 to 26 September 2019. The mean ambient PM1 mass loading through this study was 4.72 mu g m(-3). Organic aerosols (OAs) played a dominant role with an average contribution of 82.6% to PM1, followed by 5.4% nitrate, 4.7% ammonium, 3.4% sulfate, 3.1% BC, and 0.7% chloride. The relatively lower contribution from secondary inorganic aerosols (nitrate and sulfate) in this study was distinctly different from that in eastern China, indicating lower fossil fuel usage in this city. Via positive matrix factorization (PMF), organic aerosols were decomposed into four components containing a traffic-related hydrocarbon-like OA (HOA), a cooking-related OA (COA), a biomass burning-related OA (BBOA), as well as an oxygenated OA (OOA). The OOA and COA had higher contributions (34% and 35%, respectively) to total OAs, while the rest accounted for 17% for HOA and 14% for BBOA. However, an increased mass fraction of BBOA (up to 36%) was found during the Sho Dun Festival, suggesting the importance of biomass burning emissions during the religious activities in this city. Frequent new particle formation events were observed during this study and the contribution of chemical species for the particle growth was also explored.

期刊论文 2023-04-01 DOI: http://dx.doi.org/10.1016/j.scitotenv.2021.152866 ISSN: 0048-9697

The Himalayan-Tibetan Plateau is a typical remote region with sparse air pollution. However, air pollution in cites of the inner Himalayan-Tibetan Plateau is relatively serious due to emissions from local residents. Carbonaceous aerosols are not only an important component of air pollutants that affect the health of local residents but also an important trigger of climate change. In this study, the annual wet and dry deposition rates of carbonaceous particles were investigated in Lhasad-a typical city in the Himalayan-Tibetan Plateau, by collecting precipitation and dry deposition samples and analyzing with a thermal-optical measurement protocol. The results showed that the in-situ annual wet deposition rates of water-insoluble organic carbon (WIOC) and black carbon (BC) were 169.6 and 19.4 mg m(-2) yr(-1), respectively, with the highest and lowest values occurring in the monsoon and non-monsoon periods, respectively. Both precipitation amounts and concentrations of WIOC and BC contributed to wet deposition rates. The dry deposition rates of WIOC and BC in Lhasa had an opposite seasonal variation to that of wet deposition, with annual average deposition rates of 2563.9 and 165.7 mg m(-2) yr(-1), respectively, which were much higher than those of the nearby glacier region and remote area. These values were also much higher than the results from modeling and empirical calculations, indicating that Lhasa is a high pollution point that cannot capture by models. The results in this study have significant implications for the transport of local emissions in Lhasa to the nearby remote and glacier regions. (C) 2020 Elsevier Ltd. All rights reserved.

期刊论文 2020-01-01 DOI: http://dx.doi.org/10.1016/j.chemosphere.2020.125843 ISSN: 0045-6535
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页