共检索到 2

Hydrologic-land surface models (H-LSMs) offer a physically-based framework for representing and predicting the present and future states of the extensive high-latitude permafrost areas worldwide. Their primary challenge, however, is that soil temperature data are severely limited, and traditional model validation, based only on streamflow, can show the right fit to these data for the wrong reasons. Here, we address this challenge by (1) collecting existing data in various forms including in-situ borehole data and different large-scale permafrost maps in addition to streamflow data, (2) comprehensively evaluating the performance of an H-LSM with a wide range of possible process parametrizations and initializations, and (3) assessing possible trade-offs in model performance in concurrently representing hydrologic and permafrost dynamics, thereby pointing to the possible model deficiencies that require improvement. As a case study, we focus on the sub-arctic Liard River Basin in Canada, which typifies vast northern sporadic and discontinuous permafrost regions. Our findings reveal that different process parameterizations tend to align with different data sources or variables, which largely exhibit inconsistencies among themselves. We further observe that a model may fail to represent permafrost occurrence yet seemingly fit streamflows adequately. Nonetheless, we demonstrate that accurately representing essential permafrost dynamics, including the active soil layer and insulation effects from snow cover and soil organic matter, is crucial for developing high-fidelity models in these regions. Given the complexity of processes and the incompatibility among different data sources/variables, we conclude that employing an ensemble of carefully designed model parameterizations is essential to provide a reliable picture of the current conditions and future spatio-temporal co-evolution of hydrology and permafrost.

期刊论文 2024-12-01 DOI: 10.1016/j.jhydrol.2024.132161 ISSN: 0022-1694

Permafrost thaw has been observed in recent decades in the Northern Hemisphere and is expected to accelerate with continued global warming. Predicting the future of permafrost requires proper representation of the interrelated surface/subsurface thermal and hydrologic regimes. Land surface models (LSMs) are well suited for such predictions, as they couple heat and water interactions across soil-vegetation-atmosphere interfaces and can be applied over large scales. LSMs, however, are challenged by the long-term thermal and hydraulic memories of permafrost and the paucity of historical records to represent permafrost dynamics under transient climate conditions. In this study, we aim to understand better how LSMs function under different spin-up states, which facilitates addressing the challenge of model initialization by characterizing the impact of initial climate conditions and initial soil frozen and liquid water contents on the simulation length required to reach equilibrium. Further, we quantify how the uncertainty in model initialization propagates to simulated permafrost dynamics. Modelling experiments are conducted with the Modelisation Environmentale Communautaire-Surface and Hydrology (MESH) framework and its embedded Canadian land surface scheme (CLASS). The study area is in the Liard River basin in the Northwest Territories of Canada with sporadic and discontinuous regions. Results show that uncertainty in model initialization controls various attributes of simulated permafrost, especially the active layer thickness, which could change by 0.5-1.5 m depending on the initial condition chosen. The least number of spin-up cycles is achieved with near field capacity condition, but the number of cycles varies depending on the spin-up year climate. We advise an extended spin-up of 200-1000 cycles to ensure proper model initialization under different climatic conditions and initial soil moisture contents.

期刊论文 2022-03-01 DOI: 10.1002/hyp.14509 ISSN: 0885-6087
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页