共检索到 2

Integrating liquid CO2 phase transition blasting (LCPTB) technology with hydraulic fracturing (HF) methods can help reduce wellbore damage, create multiple radial fractures, and establish a complex fracture network. This approach significantly increases the recovery efficiency of low-permeability oil and gas fields. Accurately calculating the number of fractures caused by LCPTB is necessary to predict production enhancement effects and optimize subsequent HF designs. However, few studies are reported on large-scale physical model experiments in terms of a method for calculating the fracture number. This study analyzed the initiation and propagation of cracks under LCPTB, derived a calculation formula for crack propagation radius under stress waves, and then proposed a new, fast, and accurate method for calculating the fracture number using the principle of mass conservation. Through ten rock-breaking tests using LCPTB, the study confirmed the effectiveness of the proposed calculation approach and elucidated the variation rule of explosion pressure, rock-breaking scenario, and the impact of varying parameters on fracture number. The results show that the new calculation method is suitable for fracturing technologies with high pressure rates. Recommendations include enlarging the diameter of the fracturing tube and increasing the liquid CO2 mass in the tube to enhance fracture effectiveness. Moreover, the method can be applied to other fracturing technologies, such as explosive fracturing (EF) within HF formations, indicating its broader applicability and potential impact on optimizing unconventional resource extraction technologies. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

期刊论文 2024-11-01 DOI: 10.1016/j.jrmge.2024.01.023 ISSN: 1674-7755

The technology of expansion fracturing with liquid CO2 (EFLCO2) has attracted increasing attention due to reduced vibration and damage. The disposable fracturing tube has been developed and is gradually replacing the Cardox tube. However, there is a lack of impact pressure testing of disposable tubes under real working conditions, selection of gas explosion design parameters, and systematic analysis of blasting vibration. This limitation has constrained the widespread application of disposable fracturing tubes in engineering. A joint monitoring of the pressure-time curves in the disposable tubes and boreholes was conducted. The rock-breaking effect of varying hole spacing parameters in the EFLCO2 design was analyzed, and a systematic study was carried out on the vibration peak value, frequency, and energy characteristics. The results show that (1) the pressure distribution characteristics, stress peak value, and duration in the disposable tubes are different from those of Cardox tubes, which show multi-peak distribution, low-pressure peak value, and short duration. The correlation between the pressure in the disposable tube, filling pressure, and liquid CO2 weight is established, and a theoretical calculation method for the borehole wall pressure is proposed; (2) The hole spacing in rocks of different hardness is suggested; and (3) At the same scale distance, the peak particle velocity (PPV) caused by EFLCO2 (PPVCO2) is significantly smaller than that caused by blasting (PPVexplosive). The ratio of PPVexplosive to PPVCO2 is a power function related to scale distance, and a distance-related zonality exist in this relationship. The frequency composition of the vibration signal caused by EFLCO2 is relatively simple with a narrow frequency band. Its PPV and energy are mainly concentrated in the low-frequency band. This research contributes to the optimization of disposable fracturing tubes, gas explosion design, and vibration hazard control. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

期刊论文 2024-08-01 DOI: 10.1016/j.jrmge.2024.04.0121674-7755 ISSN: 1674-7755
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页