共检索到 3

Soil respiration is one of the dominant fluxes of CO2 from terrestrial ecosystems to the atmosphere. Accurate quantification of soil respiration is essential for robust projection of future climate variation and for reliable estimation of paleoatmospheric CO2 levels using soil carbonates. Soil-respired CO2, which is the most uncertain factor in estimating atmospheric CO2 concentration, has been calculated from modern observations of surface soils and from proxy indicators of paleosols formed during time periods of known atmospheric CO2. However, these estimations provide a wide range of S(z) values from past to present. To directly compare modern observation with past estimation, here we first monitored soil CO2 profiles in a Holocene profile on the western Chinese Loess Plateau (CLP) for two years, providing direct measurements of soil-respired (CO2 )at the depth where carbonate nodules likely formed. We then collected carbonate nodules below last interglacial paleosol (S1) from two N-S-aligned transects across the CLP to back-calculate soil-respired CO2. The mean back-calculated S(z) from S1 carbonate nodules vary from 539 +/- 87 ppm to 848 +/- 170 ppm in the sections on the northwestern and southeastern CLP, respectively. The mean value of directly measured soil-respired CO2 on the western CLP is 572 + 273 ppm before the onset of summer monsoon, consistent with the back-calculated S(z) in northwestern sections. Our results suggest that spatial S(z) variations are mainly controlled by monsoonal precipitation during the summer season on the CLP. To better constrain the high end of S(z), more monitoring work is needed in higher precipitation areas on the southeastern CLP.

期刊论文 2023-10-01 DOI: http://dx.doi.org/10.1016/j.palaeo.2020.110158 ISSN: 0031-0182

Lucerne (Medicago sativa L.) is one of the most successfully introduced species for revegetation on the Loess Plateau of China and provides important ecosystem services. However, the driving mechanism of soil organic carbon (SOC) and total nitrogen (TN) in lucerne grasslands remains unclear. This study explored the controlling factors of SOC and TN in lucerne grasslands in the semiarid Loess Plateau. A total of 112 quadrats were employed in 28 lucerne fields. Vegetation characteristics, topographic factors, and soil properties at a 0-20 cm depth were measured in each quadrat. The SOC and TN contents increased with altitude and showed positive correlations with species richness, aboveground biomass of native plants, soil moisture, soil inorganic nitrogen, total soil phosphorus (P), and C:P and N:P ratios. Variations in SOC and TN contents were mainly attributed to soil resources, followed by the interaction of topography, vegetation and soil. Soil P, soil moisture, altitude, and native plant species were the main factors controlling SOC and TN contents in these lucerne grasslands. Results suggest that specific abiotic (soil P and moisture) and biotic (plant species diversity) factors controlled SOC and TN in semiarid lucerne grasslands. These factors should be included in SOC and TN evaluation models to predict the future terrestrial ecosystem carbon and nitrogen dynamics.

期刊论文 2022-04-01 DOI: 10.1016/j.catena.2021.105983 ISSN: 0341-8162

Aerosol microphysical properties, scattering and absorption characteristics, and in particular, the vertical distributions of these parameters over the eastern Loess Plateau, were analyzed based on aircraft measurements made in 2020 during a summertime aircraft campaign in Shanxi, China. Data from six flights were analyzed. Statistical characteristics and vertical distributions of aerosol concentration, particle size, optical properties, including aerosol scattering coefficient (Sigma sp), backscattering ratio (beta sc), Angstro spacing diaeresis m exponent (alpha), single-scattering albedo (SSA), partially-integrated aerosol optical depth (PAOD), and black carbon concentration (BCc), were obtained and discussed. Mean values of aerosol particle number concentration (Na), particle volume concentration (Va), mass concentration (Ma), surface concentration (Sa), and particle effective diameter (EDa) were 854.92 cm-3, 13.37 mu m3 cm- 3, 20.06 mu g/m3, 170.08 mu m3 cm- 3, and 0.47 mu m, respectively. Mean values of BCc, Sigma sp (450, 525, 635 nm), beta sp (525 nm), alpha(635/450), and SSA were 1791.66 ng m- 3, 82.37 Mm- 1 at 450 nm, 102.57 Mm- 1 at 525 nm, 126.60 Mm-1 at 635 nm, 0.23, 1.47, and 0.92, respectively. Compared with values obtained in 2013, Na decreased by 60% and Ma decreased by 45%, but the scattering coefficients increased in different degrees. In the vertical direction, aerosol concentrations were higher at lower altitudes, decreasing with height. Vertical profiles of Sigma sp, beta sp, alpha(635/450), and BCc measured during the six flights were examined. Two peaks in Na were identified near the top of the boundary layer and between 2000 and 2200 m. Fine particles with EDa smaller than 0.8 mu m are dominant in the boundary layer and coarse aerosols existed aloft. Aerosol scattering properties and BCc in the lowest layer of the atmosphere contributed the most to the total aerosol radiative forcing. SSA values were greater than 0.9 below 2500 m, with lower values at higher levels of the atmosphere. On lightly foggy days, SSA values were greater than 0.9, and aerosols played a cooling role in the atmosphere. On hazy days, lowerlevel SSA values were generally greater than 0.85, with aerosols likely having a warming effect on the atmosphere. 48-hour backward trajectories of air masses during the observation days showed that the majority of aerosol particles in the lower atmosphere originated from local or regional pollution emissions, contributing the most to the total aerosol loading and leading to high values of aerosol concentration and radiative forcing.

期刊论文 2022-02-01 DOI: 10.1016/j.atmosenv.2021.118888 ISSN: 1352-2310
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页