共检索到 2

The shear deformation characteristics of the pile-soil interface is significantly influenced by the water content due to the structural strength and water-sensitive nature of loess, leading to strain-softening behavior during shear deformation. Effective saturation and Bishop's effective stress were employed as direct driving variables to reflect the effects of saturation on the structural strength of loess, based on the water-stress coupling characteristics of the pile-loess interface. Structural parameters such as cohesion, friction angle, and compression index, along with their evolution equations, are developed to reflect the degradation of structural strength with plastic strain and effective saturation. On the basis, by equating the plastic deformation of unsaturated structural loess with saturated non-structural loess under lateral confinement, a load-collapse function is developed for the pile-loess interface in the effective stress-effective degree of saturation space. An elastoplastic hydro-mechanical coupling model for the pile-loess interface is developed by integrating a soil-water characteristic curve. The model is validated using direct shear test data from unsaturated structural Lanzhou loess and field pile test data from Shanxi unsaturated loess. The results show that the proposed model effectively. represents the hydro-mechanical coupling behavior of the pile-unsaturated loess interface, reflects the effects of saturation on shear strength, and captures the variation of strain-softening characteristics at the pile-soil interface with saturation. The model offers aneffective approach for disaster prevention design, analysis, and assessment of the load-carrying behavior of piles in unsaturated loess.

期刊论文 2025-05-01 DOI: 10.16285/j.rsm.2024.0978 ISSN: 1000-7598

Background Loess is prone to large deformation and flow slide due to natural and artificial interfaces inside. The strength of these interfaces controls the mechanical properties of loess. Obtaining their mechanical parameters through in-situ testing is essential for evaluating the mechanical stability in loess engineering with interfaces. Methods By developing a borehole micro static cone penetration system and creating various types of loess with interfaces, extensive borehole penetration model tests were conducted to observe changes in cone tip resistance during penetration. The response surface method was used to analyze the impact of various test conditions on the calculated resistance. A three-dimensional surface fitting method was employed to establish the relationship between penetration parameters and shear strength parameters, which was validated through in-situ testing. Results The developed borehole micro static cone penetration system achieves overall miniaturization while providing significant penetration power and ensuring an effective penetration distance. Cone tip resistance development during penetration can be divided into three stages: initial, rapid increase, and slow increase. The transition times between these stages vary for different soils. Calculated resistance is positively correlated with dry density and normal stress and negatively correlated with water content. A quadratic positive correlation was established between calculated resistance and shear strength parameters during penetration. In composite soils, the interaction between water content and normal stress is strong. Compared to intact soil samples, the shear strength parameters of composite soils are more prominently influenced by water content. Conclusion A system for testing interface mechanical parameters was innovatively developed, fulfilling the need to obtain interface shear strength parameters for deep soil. This study can provide support for ensuring the long-term stability of the loess slope or subgrade with interfaces.

期刊论文 2024-08-21 DOI: 10.1186/s40677-024-00286-5
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页