共检索到 2

In the study, JL-BC, an environmentally friendly shale inhibitor with a temperature tolerance of 220 degrees C was synthesized by grafting modified nano biochar (BC) onto polyarginyl lysine (JL) for the first time. Fourier transform infrared spectroscopy (FTIR) and thermogravimetric (TGA) tests indicated that JL-BC had been successfully synthesized and had good thermal stability. The inhibition performance of JL-BC was experimentally evaluated by linear swelling test, hot-rolling recovery test and sodium bentonite (Na-BT) block immersion test, and the inhibition mechanism of JL-BC was studied by various experimental characterization methods. The experimental results showed that compared with potassium chloride (KCl), polyether amine (PEA), bionic inhibitor dopamine (DA), 2, 3-epoxypropyltrimethylammonium chloride (EPTAC), and poly dimethyl diallyl ammonium chloride (PDMDAAC), Na-BT had the lowest linear swelling height of 4.49 mm in 4 % JL-BC solution at 150 degrees C. The recovery rates of shale cuttings were highest in 4 % JL-BC solution at 200 degrees C and 220 degrees C, which were 96 % and 92 %, respectively. The Na-BT block was immersed in 4 % JL-BC solution for 16 h basically retained its original morphology. The excellent inhibition performance of JL-BC was mainly attributed to the positive charge of JL-BC in aqueous solution at pH 9, which was strongly adsorbed on Na-BT, lowering the zeta potential of Na-BT, destabilizing Na-BT and causing it to aggregate. With the increase of JL-BC concentration, NaBT gradually aggregated into larger flocs, increasing the particle size of Na-BT. Nano BC reduced water intrusion to a certain extent by physically blocking micropores. In addition, the EC50 value of JL-BC was 2.93 x 105 mg/L, indicating that it was non-toxic. The addition of JL-BC to the soil effectively increased the content of organic matter, ammonium nitrogen and available potassium, and promoted the growth of wheat seedlings. This work may open a new avenue for the development and use of environmentally friendly treatment agents.

期刊论文 2024-09-15 DOI: 10.1016/j.molliq.2024.125666 ISSN: 0167-7322

Cadmium significantly impacts plant growth and productivity by disrupting physiological, biochemical, and oxidative defenses, leading to severe damage. The application of Zn-Lys improves plant growth while reducing the stress caused by heavy metals on plants. By focusing on cadmium stress and potential of Zn-Lys on pea, we conducted a pot-based study, organized under completely randomized block design CRD-factorial at the Botanical Garden of Government College University, Faisalabad. Both pea cultivars were grown in several concentrations of cadmium @ 0, 50 and 100 mu M, and Zn-Lys were exogenously applied @ 0 mg/L and 10 mg/L with three replicates for each treatment. Cd-toxicity potentially reduces plant growth, chlorophyll contents, osmoprotectants, and anthocyanin content; however, an increase in MDA, H2O2 initiation, enzymatic antioxidant activities as well as phenolic, flavonoid, proline was observed. Remarkably, exogenously applied Zn-Lys significantly enhanced the plant growth, biomass, photosynthetic attributes, osmoprotectants, and anthocyanin con-tents, while further increase in enzymatic antioxidant activities, total phenolic, flavonoid, and proline contents were noticed. However, application of Zn-Lys instigated a remarkable decrease in levels of MDA and H2O2. It can be suggested with recommendation to check the potential of Zn-Lys on plants under cadmium-based toxic soil.

期刊论文 2024-02-01 DOI: 10.1007/s11356-024-31874-5 ISSN: 0944-1344
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页