A comprehensive global investigation on the impact of reduction (changes) in aerosol emissions due to Coronavirus disease-2019 (COVID-19) lockdowns on aerosol single scattering albedo (SSA) utilizing satellite observations and model simulations is conducted for the first time. The absolute change in Ozone Monitoring Instrument (OMI) retrieved, and two highly-spatially resolved models (Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA-2) and Copernicus Atmosphere Monitoring Service (CAMS)) simulated SSA is <4% (<0.04-0.05) globally during COVID (2020) compared to normal (2015-2019) period. Change in SSA during COVID is not significantly different from long-term and year-to-year variability in SSA. A small change in SSA indicates that significant reduction in anthropogenic aerosol emissions during COVID-19 induced lockdowns has a negligible effect in changing the net contribution of aerosol scattering and/or absorption to total aerosol extinction. The changes in species-wise aerosol optical depth (AOD) are examined in detail to explain the observed changes in SSA. Model simulations show that total AOD decreased during COVID-19 lockdowns, consistent with satellite observations. The respective contributions of sulfate and black carbon (BC) to total AOD increased, which resulted in a negligible change in SSA during the spring and summer seasons of COVID over South Asia. Europe and North America experience a small increase in SSA (<2%) during the summer season of COVID due to a decrease in BC contribution. The change in SSA (2%) is the same for a small change in BC AOD contribution (3%), and for a significant change in sulfate AOD contribution (20%) to total AOD. Since, BC SSA is 5-times lower (higher absorption) than that of sulfate SSA, the change in SSA remains the same. For a significant change in SSA to occur, the BC AOD contribution needs to be changed significantly (4-5 times) compared to other aerosol species. A sensitivity analysis reveals that change in aerosol radiative forcing during COVID is primarily dependent on change in AOD rather than SSA. These quantitative findings can be useful to devise more suitable future global and regional mitigation strategies aimed at regulating aerosol emissions to reduce environmental impacts, air pollution, and public health risks.
A comprehensive investigation of physical, optical, and chemical characteristics of columnar aerosols over two locations with distinct environmental settings in the Indo-Gangetic Plain (IGP) region, namely, Kanpur (urban and industrial area) and Gandhi College (rural area), is conducted using high-quality aerosol datasets obtained from ground-based Aerosol Robotic Network (AERONET) observations during the recent five year period (2015-2019). This study utilizes all the crucial columnar aerosol parameters necessary for accurately estimating aerosol radiative forcing. Quantification of contribution by different aerosol species originating from natural and anthropogenic sources to the total aerosol optical depth (AOD) and single scattering albedo (SSA) is important to understand the specific mechanisms that influence the aerosol composition, thereby reducing the uncertainty in aerosol radiative forcing. For the first time, two highly spatially resolved models' (Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA-2) and Copernicus Atmosphere Monitoring Service (CAMS)) simulated absorbingspecies-wise (black carbon (BC), dust, and brown carbon (BrC)) AOD, and absorption AOD (AAOD) are compared and contrasted against the AERONET observations over the IGP region in a systematic manner. MERRA-2 AODs are mostly lower, whereas CAMS AODs are consistently higher than the AERONET AODs. A comparison of collocated time and space observations with models clearly suggests that improvements in emission inventories on a seasonal scale are essential. MERRA-2 SSA is noted lower than the AERONET SSA during the winter season due to overestimation in BC AOD. During winter in >70% of MERRA-2 simulated SSA the difference is higher than +/- 0.03 (the uncertainty range of AERONET SSA) whereas during pre-monsoon and monsoon seasons >60% of MERRA-2 SSA lies within the uncertainty range of AERONET SSA. Both models show a gradient in AODDust decreasing from west to east in the IGP. However, observations do not often exhibit the gradient in dust, which is validated by air mass back trajectory analyses as air masses travel through different pathways to IGP and reverse the west to east gradient in AODDust. This quantitative and comparative collocated analysis of observed aerosol characteristics with models on a seasonal scale will enable a better estimation of aerosol radiative forcing, and can help improve aerosol processes and parameterizations in models.