The study applies the Minimum Impact Design Standards (MIDS) calculator to assess urban trees' effectiveness in reducing surface runoff along five flood-prone streets in Hue City, analyzing evapotranspiration, rainfall interception, and infiltration, along with Leaf Area Index (LAI), Canopy Projection (CP), tree pit size, and soil structure. Results show that urban trees retain 1,132.39 m(3) of stormwater, but runoff reduction is not solely dependent on tree quantity. Although tree numbers vary 1.56 to 3.8 times, runoff reduction differs only 1.39 to 1.79 times. Evapotranspiration plays the largest role, contributing 2.8 times more than interception and 2.6 times more than infiltration. Small tree pits and compacted soil limit infiltration, while pruning and height reduction decrease Pc and LAI, reducing flood mitigation benefits. Annual storm damage further weakens this capacity. To enhance effectiveness, the study suggests prioritizing storm-resistant species, increasing tree numbers, enlarging tree pits, and using structured soil. Implementing these measures can improve urban flood resilience and maximize trees' hydrological benefits. Future research should focus on optimizing tree selection and planting strategies for long-term flood management in urban areas, ensuring sustainable solutions that enhance both stormwater control and environmental resilience.