共检索到 4

The presence of toxic heavy metals lead (Pb) and cadmium (Cd) in polluted soil damage crop production and consequently harms human and livestock health. Tartary buckwheat (Fagopyrum tataricum) is a potential model plant for heavy metal phytoremediation because of its valuable characteristics of high heavy metal tolerance and abundant biomass production. Here, we report that the Tartary buckwheat FtMYB46-FtNRAMP3 module enhances plant Pb and Cd tolerance. RNA sequencing analysis showed that Pb treatment specifically induced expression of FtNRAMP3, a member of the NRAMP (Natural Resistance-Associated Macrophage Protein) transporter gene family. Further cytological and biochemical analysis revealed that FtNRAMP3 was localised to the plasma membrane and significantly contributed to increased tolerance to Pb and Cd in yeast cells. Consistently, transgenic overexpression of FtNRAMP3 in Arabidopsis significantly increased plant tolerance to Pb and Cd applications, reducing Pb concentration but increasing Cd concentration in the overexpression transgenic plants. Subsequent yeast one-hybrid and electrophoretic mobility shift assays showed that the transcription factor FtMYB46 directly binds to the FtNRAMP3 promoter. Further, FtMYB46 promoted FtNRAMP3 expression and increased plant Pb and Cd tolerance. Overall, this study demonstrates the important role of the FtMYB46-FtNRAMP3 module and its potential value in the phytoremediation of Pb and Cd stress.

期刊论文 2025-04-02 DOI: 10.1111/pce.15518 ISSN: 0140-7791

MYB transcription factors exert crucial functions in enhancing plant stress tolerance, which is impacted by soil drought and salinity. In our study, the R2R3-type MYB transcription factor gene LcMYB5 from blue honeysuckle ( Lonicera caerulea L.) was successfully cloned and identified, and confirmed its nuclear localization. LcMYB5 overexpression was vastly enhanced drought and salt tolerance in both blue honeysuckle and tobacco seedlings. After drought stress, transgenic tobacco exhibited an average survival rate of 70.30%, while most wild-type (WT) plants perished, resulting in a survival rate of only 15.33%. Following salt stress, the average survival rate for transgenic tobacco reached 77.24%, compared to just 22.47% for WT plants. Measurements indicated, that transgenic tobacco had higher proline content than WT, as well as higher superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activity. Transgenic tobacco decreased chlorophyll content less dramatically than WT tobacco, despite both tobaccos having decreased chlorophyll content. Furthermore, the level of malondialdehyde (MDA) and relative conductivity were lower in transgenic tobacco compared to WT. Furthermore, LcMYB5 overexpression significantly increased the expression levels of key genes related to drought stress ( NCED1 , NCED2, PYL4, PYL8, and CBL1) and salt stress ( NHX1 , SOD, CAT1, SOS1, and HSP17.8), thus improving transgenic tobacco's stress tolerance. Compared to WT blue honeysuckle, transiently transformed LcMYB5-expressing blue honeysuckle exhibited milder damage under stress conditions, a significant increase in chlorophyll and proline content was observed, the activities of SOD, POD and CAT were also significantly increased, the increase in MDA content and relative conductivity is relatively small. Additionally, In addition, transient expression of LcMYB5 can also positively regulate the expression of these five key genes of drought stress and five key genes of salt stress, so as to improve the resistance of transgenic blue honeysuckle to drought and salt stress. In summary, our study reveals the important regulatory role of LcMYB5 in plant resistance to drought and salt stress, providing theoretical support and potential application value for further improving crop stress resistance.

期刊论文 2025-01-01 DOI: 10.1016/j.jplph.2024.154409 ISSN: 0176-1617

Cadmium (Cd) is a heavy metal highly toxic to living organisms. Cd pollution of soils has become a serious problem worldwide, posing a severe threat to crop production and human health. When plants are poisoned by Cd, their growth and development are inhibited, chloroplasts are severely damaged, and respiration and photosynthesis are negatively affected. Therefore, elucidating the molecular mechanisms that underlie Cd tolerance in plants is important. Transcription factors can bind to specific plant cis-acting genes. Transcription factors are frequently reported to be involved in various signaling pathways involved in plant growth and development. Their role in the resistance to environmental stress factors, particularly Cd, should not be underestimated. The roles of several transcription factor families in the regulation of plant resistance to Cd stress have been widely demonstrated. In this review, we summarize the mechanisms of five major transcription factor families-WRKY, ERF, MYB, bHLH, and bZIP-in plant resistance to Cd stress to provide useful information for using molecular techniques to solve Cd pollution problems in the future.

期刊论文 2024-06-13 DOI: 10.3389/fpls.2024.1397289 ISSN: 1664-462X

Cd (cadmium) is a highly toxic heavy metal pollutant often present in soil and detrimentally impacting the production and quality of horticultural crops. Cd affects various physiological and biochemical processes in plants, including chlorophyll synthesis, photosynthesis, mineral uptake and accumulation, and hormonal imbalance, leading to cell death. The MYB family of transcription factors plays a significant role in plant response to environmental influences. However, the role of MYB116 in abiotic stress tolerance remains unclear. In this study, we reported that Chinese cabbage transcription factor BrMYB116 enhanced Cd stress tolerance in yeast. The expression level of BrMYB116 was increased by Cd stress in Chinese cabbage. Additionally, yeast cells overexpressing BrMYB116 showed improved Cd stress tolerance and reduced Cd accumulation. Moreover, we found that BrMYB116 interacted with facilitator of iron transport (FIT3) to enhance Cd stress tolerance. ChIP-qPCR results showed that ScFIT3 was activated through specific binding to its promoter. Additionally, the overexpression of ScFIT3 induced Cd stress tolerance and reduced Cd accumulation in yeast and Chinese cabbage. These results suggest new avenues for plant genomic modification to mitigate Cd toxicity and enhance the safety of vegetable production.

期刊论文 2024-06-07 DOI: 10.3389/fpls.2024.1388924 ISSN: 1664-462X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页