A series of large-scale shaking table tests was conducted on a pile network composite-reinforced high-speed railway subgrade. The displacement, peak acceleration amplification factor, dynamic soil pressure, and geogrid strain data were used to investigate the dynamic characteristics. The Hilbert-Huang transform spectrum, marginal spectrum, and damping ratios were used to study the seismic energy dissipation characteristics and damage evolution mechanisms of the reinforced subgrade. The results indicate that the graded loading of seismic waves induces a global settlement phenomenon within the subgrade, the displacement phenomenon of the slope is more evident, and the reinforcement effectively mitigates the amplification effect of the peak acceleration along the elevation. The peak and cumulative residual dynamic soil pressures were most significant near the bedding layer, and the upper and middle parts of the subgrade exhibited superior stabilization performance. The geogrid reduced the local vibration variability and enhanced the overall stability. The damage evolution in the middle part of the subgrade was relatively gentle, whereas the slope exhibited a multistage development trend. The internal damage of the subgrade grows slowly at 0.1-0.2 g, faster at 0.2-0.6 g, and rapidly at 0.6-1.0 g.
Shaking-table model experiments were conducted to study the dynamic response and damage mechanisms of pile-network composite high-speed railway foundations under seismic action. By inputting seismic waves of various types and acceleration amplitudes, the surface damage phenomena, acceleration response, and displacement response of the roadbed during vibration were analyzed. The time frequency information and energy distribution were examined using Hilbert marginal spectrum theory. Additionally, the damage mechanisms of the model were explored through transfer function analysis. The results indicated that the soil surface deformation measured using particle image velocimetry closely matched the observed macroscopic phenomena. The Peak Ground Acceleration amplification coefficients exhibited clear delamination before the structure showed signs of damage, indicating a significant energy-absorbing effect of the bedding. Spectral analysis revealed that as the vibration intensity increased, the nonlinear characteristics and damage effects of the model became more pronounced, and its ability to dissipate energy strengthened. Energy became more concentrated in the left half of the top of the model. Moreover, as the vibration intensity increased, the self-oscillation frequency of the roadbed decreased, the stiffness diminished, the damping ratio increased, and the seismic energy dissipation improved.