2002年重力卫星GRACE的成功发射极大地促进了地球科学多个领域,包括全球海平面变化、极地冰盖与高山冰川消融、水文以及固体地球等多个领域的发展.然而,GRACE观测数据主要是以球谐系数的形式给出,需要应用者进行一系列预处理才可以得到对应的物理量.为了克服此困难,也为了提高GRACE恢复重力场地空间分辨率,相关机构在近些年推出了新一代GRACE观测数据产品,即Mascon产品.该产品的初衷是便于非大地测量和地球物理专业的人使用,比如水文学家、海洋学家,它无需进行任何后处理过程,使用上更加方便.然而,尽管Mascon产品以较高的空间分辨率(如1°)给出,但是,该产品的应用范围以及其实际的分辨率等都是科学家们非常关注的问题.目前科学家们已经对该产品在不同流域尺度以及不同应用领域上的适用性问题进行了系统性地评估.本文综合介绍了Mascon产品的基本原理和方法、三家Mascon产品的差异,并梳理了该产品和球谐系数产品之间在一些具体物理问题的应用中的适用性以及应该注意的问题,为广大科研工作者提供科学依据和使用参考.
2002年重力卫星GRACE的成功发射极大地促进了地球科学多个领域,包括全球海平面变化、极地冰盖与高山冰川消融、水文以及固体地球等多个领域的发展.然而,GRACE观测数据主要是以球谐系数的形式给出,需要应用者进行一系列预处理才可以得到对应的物理量.为了克服此困难,也为了提高GRACE恢复重力场地空间分辨率,相关机构在近些年推出了新一代GRACE观测数据产品,即Mascon产品.该产品的初衷是便于非大地测量和地球物理专业的人使用,比如水文学家、海洋学家,它无需进行任何后处理过程,使用上更加方便.然而,尽管Mascon产品以较高的空间分辨率(如1°)给出,但是,该产品的应用范围以及其实际的分辨率等都是科学家们非常关注的问题.目前科学家们已经对该产品在不同流域尺度以及不同应用领域上的适用性问题进行了系统性地评估.本文综合介绍了Mascon产品的基本原理和方法、三家Mascon产品的差异,并梳理了该产品和球谐系数产品之间在一些具体物理问题的应用中的适用性以及应该注意的问题,为广大科研工作者提供科学依据和使用参考.
The hydrology of the Third Pole, Asia's freshwater tower, has shown considerable sensitivity to the impacts of climate change and human interventions, which affect the headwaters of many rivers that originate therein. For example, the Yangtze River has its basin (YRB) experiencing wetness of terrestrial water storage (TWS), whose rainfall seems to be the primary source as inferred from the previous studies. Consequently, it is crucial to understand the contributions of each TWS's sub-domain - i.e., groundwater (GWS); total water content (TWC) stored as soil moisture, ice/snow, and canopy; and the surface water (SWS) storages - on YRB's wetness. Hence, SWS, from altimetry and imagery satellites, and TWC, from Global Land Data Assimilation System, are inverted considering the same basis function as for TWS from the Gravity Recovery and Climate Experiment, which account for the differences in the resolutions inherent in each product. Furthermore, a tie-in signal approach is used to fit the temporal patterns of GWS, TWC, and SWS to TWS (i.e., the observations). Results show improvements in the reconstructed GWS series concerning standard deviation, correlation coefficient, and Nash-Sutcliffe efficiency of 22%, 27%, and 120%, respectively, regarding the use of the TWS-budget equation. The reconstructed time series of GWS, TWC, and SWS present an increase of 1.76, 2.69, and 0.14 mm per year (mm/yr) and that YRB loses water stored at its aquifers 55% of the time (regarding 2003-2016 period) based on the quantile function of storage (QFS). The QFS's slope shows that TWS has a fast and small storage potential w.r.t. GWS since inland waters and soil moisture reflect the dryness impacting TWS first. Despite the evidence of an increase of 19.05 mm/yr in annual precipitation, which seems to explain the bulk in TWS, further investigation to characterize controls on TWS memory within YRB is still necessary. (C) 2020 Elsevier B.V. All rights reserved.