冰湖识别是了解冰湖对气候变化的响应和评估冰湖溃决洪水潜在危险的先决条件。虽然遥感技术使全球冰湖演变的持续监测和评估成为可能,但准确可靠地提取复杂高原地形区的冰湖仍然具有挑战性。本文提出了融合多源遥感数据和改进后MaskR-CNN深度学习模型的复杂高原地形区冰湖智能识别方法,在MaskR-CNN模型基础上,通过在骨干网络ResNet-50的高层特征(Conv4和Conv5)、FPN的每个特征图以及Mask Head 中引入注意力机制。利用Sentinel-2高分辨遥感影像、ALOS-DEM及NDWI数据组成多波段数据集,并在青藏高原东南部的林芝市进行测试,并进一步比较了改进后Mask R-CNN、U-Net、SegNet和DeepLab V3模型在冰湖识别中的性能。改进后的Mask R-CNN模型具有更高的准确率,模型的精确度、召回率和准确度值分别达到了91.25%、93.69%、92.89%。它有效地降低了山体阴影、湖水浊度和冻融湖水条件对冰湖识别的影响,并显著提高了小冰湖的识别效率。本研究为地形复杂高原地形区冰湖识别提供了可靠解决方案,为深度学习与多源遥感数据结合的智能化冰湖提取提供...
冰湖识别是了解冰湖对气候变化的响应和评估冰湖溃决洪水潜在危险的先决条件。虽然遥感技术使全球冰湖演变的持续监测和评估成为可能,但准确可靠地提取复杂高原地形区的冰湖仍然具有挑战性。本文提出了融合多源遥感数据和改进后MaskR-CNN深度学习模型的复杂高原地形区冰湖智能识别方法,在MaskR-CNN模型基础上,通过在骨干网络ResNet-50的高层特征(Conv4和Conv5)、FPN的每个特征图以及Mask Head 中引入注意力机制。利用Sentinel-2高分辨遥感影像、ALOS-DEM及NDWI数据组成多波段数据集,并在青藏高原东南部的林芝市进行测试,并进一步比较了改进后Mask R-CNN、U-Net、SegNet和DeepLab V3模型在冰湖识别中的性能。改进后的Mask R-CNN模型具有更高的准确率,模型的精确度、召回率和准确度值分别达到了91.25%、93.69%、92.89%。它有效地降低了山体阴影、湖水浊度和冻融湖水条件对冰湖识别的影响,并显著提高了小冰湖的识别效率。本研究为地形复杂高原地形区冰湖识别提供了可靠解决方案,为深度学习与多源遥感数据结合的智能化冰湖提取提供...
冰湖识别是了解冰湖对气候变化的响应和评估冰湖溃决洪水潜在危险的先决条件。虽然遥感技术使全球冰湖演变的持续监测和评估成为可能,但准确可靠地提取复杂高原地形区的冰湖仍然具有挑战性。本文提出了融合多源遥感数据和改进后MaskR-CNN深度学习模型的复杂高原地形区冰湖智能识别方法,在MaskR-CNN模型基础上,通过在骨干网络ResNet-50的高层特征(Conv4和Conv5)、FPN的每个特征图以及Mask Head 中引入注意力机制。利用Sentinel-2高分辨遥感影像、ALOS-DEM及NDWI数据组成多波段数据集,并在青藏高原东南部的林芝市进行测试,并进一步比较了改进后Mask R-CNN、U-Net、SegNet和DeepLab V3模型在冰湖识别中的性能。改进后的Mask R-CNN模型具有更高的准确率,模型的精确度、召回率和准确度值分别达到了91.25%、93.69%、92.89%。它有效地降低了山体阴影、湖水浊度和冻融湖水条件对冰湖识别的影响,并显著提高了小冰湖的识别效率。本研究为地形复杂高原地形区冰湖识别提供了可靠解决方案,为深度学习与多源遥感数据结合的智能化冰湖提取提供...
Forests are essential to our planet's well-being, playing a vital role in climate regulation, biodiversity preservation, and soil protection, thus serving as a cornerstone of our global ecosystem. The threat posed by forest fires highlights the critical need for early detection systems, which are indispensable tools in safeguarding ecosystems, livelihoods, and communities from devastating destruction. In combating forest fires, a range of techniques is employed for efficient early detection. Notably, the combination of drones with artificial intelligence, particularly deep learning, holds significant promise in this regard. Image segmentation emerges as a versatile method, involving the partitioning of images into multiple segments to simplify representation, and it leverages deep learning for fire detection, continuous monitoring of high-risk areas, and precise damage assessment. This study provides a comprehensive examination of recent advancements in semantic segmentation based on deep learning, with a specific focus on Mask R-CNN (Mask Region Convolutional Neural Network) and YOLO (You Only Look Once) v5, v7, and v8 variants. The emphasis is placed on their relevance in forest fire monitoring, utilizing drones equipped with high-resolution cameras.