共检索到 252

Evaluating petroleum contamination risk and implementing remedial measures in agricultural soil rely on indicators such as soil metal(loid)s and microbiome alterations. However, the response of these indicators to petroleum contamination remains under-investigated. The present study investigated the soil physicochemical features, metal(loid)s, microbial communities and networks, and phospholipid fatty acids (PLFAs) community structures in soil samples collected from long-(LC) and short-term (SC) petroleum-contaminated oil fields. The results showed that petroleum contamination increased the levels of soil total petroleum hydrocarbon, carbon, nitrogen, sulfur, phosphorus, calcium, copper, manganese, lead, and zinc, and decreased soil pH, microbial biomass, bacterial and fungal diversity. Petroleum led to a rise in the abundances of soil Proteobacteria, Ascomycota, Oleibacter, and Fusarium. Network analyses showed that the number of network links (Control vs. SC, LC = 1181 vs. 700, 1021), nodes (Control vs. SC, LC = 90 vs. 71, 83) and average degree (Control vs. SC, LC = 26.244 vs. 19.718, 24.602) recovered as the duration of contamination increased. Petroleum contamination also reduced the concentration of soil PLFAs, especially bacterial. These results demonstrate that brief exposure to high levels of petroleum contamination alters the physicochemical characteristics of the soil as well as the composition of soil metal(loid)s and microorganisms, leading to a less diverse soil microbial network that is more susceptible to damage. Future research should focus on the culturable microbiome of soil under petroleum contamination to provide a theoretical basis for further remediation. (c) 2025 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

期刊论文 2025-11-01 DOI: 10.1016/j.jes.2024.12.008 ISSN: 1001-0742

Heavy metal ions, such as Cd, Hg, Pb, and As, tend to persist in soil without natural degradation and can be absorbed by crops, leading to the accumulation of agricultural products that pose a significant threat to human health. However, the development of a rapid and efficient technique for identifying heavy metals in agricultural products is essential to ensure health and safety. With the knowledge of the extent of damage caused by heavy metals, it becomes imperative to detect the presence of cadmium in the soil, water, and the environment. This study introduces a novel plate approach for quick and precise colorimetric detection of cadmium ions using the Cd(II)-Chrome Azurol S CAS-2,2 '-dipyridyl dipy-Cetylpyridinium Bromide CPB quaternary complex. Our innovative method has shown that at a reaction solution pH of 11, the optimal concentration ratio is CAS (5 x 10-3 M): dipy (0.1 M): CPB (1.0 x 10-3 M) = 4 mL: 1 mL: 1 mL. The most significant fading alert was observed when the ethylenediaminetetraacetic acid (EDTA) chelator was added dropwise to the CAS detection plate, indicating strong chelation of Cd by EDTA. This laboratory-based study established a foundation for future applications in real environmental sample analysis.

期刊论文 2025-10-01 DOI: 10.1016/j.ab.2025.115911 ISSN: 0003-2697

Lead (Pb), a prevalent heavy metal contaminant in aquatic environments, has complex effects on the gut microbiome function of aquatic animals. In this study, metagenomic analysis of Bufo gargarizans tadpoles was carried out following Pb exposure. Moreover, histological analysis was performed on the intestines. The results showed that Pb exposure induced histological damage to the intestinal epithelium. Significant differences in microbial abundance and function were detected in the 200 mu g/L Pb group compared to the control group. Specifically, an increase in Bosea and Klebsiella was noted at 200 mu g/L Pb, which potentially could induce inflammation in tadpoles. Notably, the decrease in the abundance of glycoside hydrolases subsequent to exposure to 200 mu g/L Pb is likely to attenuate carbohydrate metabolism. Furthermore, increased fluoroquinolone-related antibiotic resistance genes (ARGs), phenolic-related ARGs, and iron uptake systems following 200 mu g/L Pb exposure might heighten the disease risk for tadpoles. These discoveries augment our comprehension of the influences of Pb on the intestinal well-being of amphibians and offer valuable insights for further assessment of the ecological risks that Pb poses to amphibians.

期刊论文 2025-09-01 DOI: 10.1016/j.cbd.2025.101522 ISSN: 1744-117X

Soil chemical washing has the disadvantages of long reaction time, slow reaction rate and unstable effect. Thus, there is an urgent need to find a cost-effective and widely applicable alternative power to facilitate the migration of washing solutions in the soil, so as to achieve efficient removal of heavy metals, reduce the risk of soil compaction, and mitigate the damage of soil structure. Therefore, the study used a combination of freeze-thaw cycle (FTC) and chemical washing to obtain three-dimensional images of soil pore structure using micro-X-ray microtomography, and applied image analysis techniques to study the effects of freeze-thaw washing on the characteristics of different pore structures of the soil, and then revealed the effects of pore structure on the removal of heavy metals. The results showed that the soil pore structure of the freeze-thaw washing treatment (FT) became more porous and complex, which increased the soil imaged porosity (TIP), pore number (TNP), porosity of macropores and irregular pores, permeability, and heavy metal removal rate. Macroporosity, fractal dimension, and TNP were the main factors contributing to the increase in TIP between treatments. The porous structure resulted in larger effective pore diameters, which contain a greater number of branching pathways and pore networks, allowing the chemical washing solutions to fully contact the soil, increasing the roughness of the soil particle surface, mitigating the risk of soil compaction, and decreasing the contamination of heavy metals. The results of this study contribute to provide new insights into the management of heavy metal pollution in agricultural soils.

期刊论文 2025-09-01 DOI: 10.1007/s11270-025-08245-y ISSN: 0049-6979

The toxicity is produced for living organisms when the nanomaterials are developed in the natural ecosystem either naturally or if introduced by humans. Nevertheless, there is a huge gap in the research of this area, and investigations are being conducted to determine the potential detrimental impacts of the nanomaterials and the means of eliminating the potential toxicities. In our research, we investigated the potential of zinc oxide nanoparticle (ZnONPs) tolerant Trichoderma pseudoharzianum T113 strains in reducing the toxicity of ZnO NPs in tomato crops. Our research findings of a very thoroughly investigated experiment on mechanism of action revealed that application of T113 in NPs amended soil triggered an appreciable change in the microbial diversity of the soil and improved the population density and diversity of the growth-promoting soil microbes and fungi that produced glomalin, a protein responsible for metal chelating. The amount of glomalin in the soil was significantly improved in soil by T113 strain inoculation. The diversity and abundance of the microbes, having beneficial impacts on plants and the glomalin in soil, drastically reduced the NPs induced toxicity under the application of the T113 strain of T. pseudoharzianum. Plants inoculated with the T113 strain, when grown in NPNP-contaminated soil, exhibited increased growth, enhanced antioxidant activities, improved photosynthesis, and a decline in damage induced by oxidative stress and the accumulation and translocation of Zn. Moreover, applying the T113 strain also reduced the Zn bioavailability in soil contaminated with NPs. These research findings are an eco-friendly and sustainable solution to the ZnO NP toxicity in the host plants.

期刊论文 2025-09-01 DOI: 10.1016/j.stress.2025.100919 ISSN: 2667-064X

In sensitive ecosystems of the Arctic, even slight disruptions may produce serious damage. Therefore, the extent of contamination in such zones should be evaluated. A comparison was made between concentrations of metals in Sanionia uncinata in three areas of the European Arctic: (1) the vicinity of the Polish Polar Station in the SW part of Spitsbergen on Wedel Jarlsberg Land, (2) Longyearbyen (Spitsbergen) influenced by local sources of pollution and (3) Iceland relatively free from local pollution. The tested hypothesis was that S. uncinata from Iceland contains significantly lower concentrations of metals than the same moss from Spitsbergen. The maximum concentrations of metals in the examined moss from Longyearbyen reached values for Cr and Mn higher than those known as harmful for plants and for Ni and Zn values within the harmful ranges with no visible harmful effects. S. uncinata from Iceland contained significantly lower concentrations of Cd, Mn, Pb compared to this species from Spitsbergen. S. uncinata seems to be a useful indicator for metal fallout in the European Arctic. This study presents the effects of local sources of contamination on metal levels in S. uncinata from Longyearbyen, Wedel Jarlsberg Land and Iceland as well as verification of S. uncinata as a suitable bioindicator in this Arctic area. The benefit of the study is a to better understanding contamination problems of Arctic habitats.

期刊论文 2025-09-01 DOI: 10.1007/s00300-025-03394-6 ISSN: 0722-4060

This study developed a novel geopolymer (RM-SGP) using industrial solid wastes red mud and slag activated by sodium silicate, aiming to remediate composite heavy metal contaminated soil. The effects of aluminosilicate component dosage, alkali equivalent, and heavy metal concentration on the unconfined compressive strength (UCS), toxicity leaching characteristics, resistivity, pH, and electrical conductivity (EC) of RM-SGP solidified composite heavy metal contaminated soil were systematically investigated. Additionally, the chemical composition and microstructural characteristics of solidified soil were analyzed using XRD, FTIR, SEM, and NMR tests to elucidate the solidification mechanisms. The results demonstrated that RM-SGP exhibited excellent solidification efficacy for composite heavy metal contaminated soil. Optimal performance occurred at 15 % aluminosilicate component dosage and 16 % alkali equivalent, achieving UCS >350 kPa and compliant heavy metal leaching (excluding Cd in high-concentration groups). Acid/alkaline leaching tests revealed distinct metal behaviors: Cu/Cd decreased progressively, while Pb initially declined then rebounded. Microstructural analysis indicated that RM-SGP generated abundant hydration products (e.g., C-A-S-H, N-A-S-H gels), which acted as cementitious substances wrapping soil particles and filling and connecting pores, thereby increasing the soil's compactness and improving the solidification effect. Furthermore, heavy metal ions were solidified through adsorption, encapsulation, precipitation, ion exchange, and covalent bond et al., transforming their active states into less bioavailable forms, proving novel insights into the remediation of composite heavy metal contaminated soils and the resource utilization of industrial solid wastes.

期刊论文 2025-08-08 DOI: 10.1016/j.conbuildmat.2025.141996 ISSN: 0950-0618

The efficacy and environmental effects of using metal-organic frameworks (MOFs) for the remediation of arsenic (As)-contaminated soil, a significant global problem, remain unclear. This study evaluated MIL-88A(Fe) and MIL101(Fe) coupled with ramie (Boehmeria nivea L.) for As-contaminated soil remediation. A soil incubation experiment revealed that 10,000 mg kg-1 MIL-88A(Fe) and MIL-101(Fe) reduced As bioavailability by 77.1 % and 65.0 %, respectively, and increased residual As fractions by 8 % and 7 % through Fe-As co-precipitation and adsorption. Divergent environmental effects emerged, which were probably due to differences in the framework structures and organic ligands: MIL-88A(Fe) improved soil urease activity and bacterial diversity, whereas MIL101(Fe) induced acidification (decreasing soil pH by 25 %) and salinity stress (elevating soil electrical conductivity (EC) by 946 %). A pot experiment showed that 1000 mg kg-1 MOFs enhanced ramie biomass via As immobilization, whereas 5000 mg kg-1 MIL-101(Fe) suppressed growth because exposure to the MOF caused root damage. The MOFs enriched Pseudomonas (As-oxidizing) and suppressed Dokdonella (pathogenic), enhancing plant resilience. Notably, 100 mg kg-1 MIL-101(Fe) increased As translocation to stems (14.8 %) and leaves (27.6 %). Hydroponic analyses showed that 50-200 mg L-1 MIL-101(Fe) mitigated As-induced chlorophyll degradation (elevating Soil and plant analyzer development (SPAD) by 12.8 %-28.3 %), whereas 500 and 1000 mg L-1 induced oxidative stress (reducing SPAD by 4.2 %-10.7 %). This study provides valuable insights into using Fe-based MOFs in soil remediation and highlights their beneficial and harmful effects.

期刊论文 2025-08-01 DOI: 10.1016/j.cej.2025.164238 ISSN: 1385-8947

Cadmium (Cd) accumulation in Solanum nigrum L. is known to occur mainly in cell walls and vesicles. However, limited research has been conducted on the toxic effects of Cd specifically targeting mitochondria in S. nigrum leaves. This study aims to delineate the impact of Cd accumulation on mitochondrial structure and function in S. nigrum leaves, thereby providing a theoretical foundation for enhancing its application in phytoremediation of Cd-polluted soils. The results showed that the Cd content in mitochondria would gradually reach saturation with the increase of Cd treatment concentration. However, the accumulation of Cd led to osmotic pressure imbalance and morphological changes within mitochondria, which in turn caused a series of impairments in mitochondrial function. Cd severely damaged the energy metabolism function of mitochondria, especially under 200 mu M CdCl2 stress, the mitochondrial ATP content decreased by 90.65 % and the activity of H+-ATPase decreased by 80.65 %. Furthermore, reactive oxygen species (ROS) in mitochondria accumulated mainly in the form of H2O2. Compared with the non-Cd control group, the H2O2 content in the Cd-treated groups (50, 100, and 200 mu M CdCl2) increased by 61.62 %, 186.69 %, and 405.81 %, respectively. The inhibition of cellular respiration by Cd and the sharp increase in ROS exacerbated the oxidative damage in mitochondria. Interestingly, the activities of mitochondrial peroxidase (POD) and dehydroascorbate reductase (DHAR) exhibit remarkable tolerance under Cd stress. Based on these results, we believe that Cd can cause dysfunction and oxidative damage to the mitochondria of S. nigrum leaves.

期刊论文 2025-08-01 DOI: 10.1016/j.plaphy.2025.110016 ISSN: 0981-9428

The environmental threat, pollution and damage posed by heavy metals to air, water, and soil emphasize the critical need for effective remediation strategies. This review mainly focuses on microbial electrochemical technologies (MET) for treating heavy metal pollutants, specifically includes Chromium (Cr), Copper (Cu), Zinc (Zn), Cadmium (Cd), Lead (Pb), Nickel (Ni), and Cobalt (Co). First, it explores the mechanisms and current applications of MET in heavy metal treatments in detail. Second, it systematically summarizes the key microbial communities involved, analyzing their extracellular electron transfer (EET) processes and summarizing strategies to enhance the EET efficiencies. Next, the review also highlights the synergistic microbial interactions in bioelectrochemical systems (BES) during the recovery and removal (remediation) processes of heavy metals, underscoring the crucial role of microorganisms in the transfer of the electrons. Then, this paper discussed how factors including pH values, applied voltages, types and concentrations of electron donors, electrode materials, biofilm thickness and other factors affect the treatment efficiencies of some specific metals in BES. BES has shown its great superiority in treating heavy metals. For example, for the treatments of Cr6+, under low pH conditions, the recovery and removal rate of Cr-6(+) by double chambers microbial fuel cell (DCMFC) can generally reach 98-99%, with some cases even achieving 100% (Gangadharan & Nambi, 2015). For the treatments of heavy metal ions such as Cu2+, Zn2+ and Cd2+, BES can also achieve the rates of treatments of more than 90% under the corresponding conditions of appropriate pH values and applied voltages(Choi, Hu, & Lim, 2014; W. Teng, G. Liu, H. Luo, R. Zhang, & Y. Xiang, 2016; Y. N. Wu et al., 2019; Y. N. Wu et al., 2018). After that, the review outlines the future challenges and the research opportunities for understanding the mechanisms of BES and microbial EET in heavy metal treatments. Finally, the prospect of future BES researches are pointed out, including the combinations with existing wastewater treatment systems, the integrations with the wind energy and the solar energy, and the application of machine learning (ML) in future BES. This article has certain significance and value for readers to better understand the working principles of BES and better operate and control BES to deal with heavy metal pollutants.

期刊论文 2025-08-01 DOI: 10.1007/s11270-025-08055-2 ISSN: 0049-6979
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共252条,26页