共检索到 6

The mechanical behavior of Methane Hydrate-Bearing Sediment (MHBS) is essential for the safe exploitation of Methane Hydrate (MH). In particular, the pore size and physicochemical characteristics of MHBS significantly influence its mechanical behavior, especially in clayey grain-cementing type MHBS. This study employs the Distinct Element Method (DEM) to investigate both the macroscopic and microscopic mechanical behavior of clayey grain-cementing type MHBS, focusing on variations in pore size and physicochemical characteristics. To accomplish this, we propose a Thermo-Hydro-Mechanical-Chemical-Soil Characteristics (THMCS) DEM contact model that incorporates the effects of pore size and physicochemical characteristics on the strength and modulus of MH. This THMCS model is validated using experimental data available in the literature. Using the proposed contact model, we conducted a series of investigations to explore the mechanical behavior of MHBS under conventional loading paths, including isotropic and drained triaxial tests using the DEM. The numerical results indicate that smaller pore sizes and lower water content-key physicochemical characteristics resulting from variations in electrochemical properties and the intensity of the electric field-can lead to reduced shear strength and stiffness due to the increased breakage of aggregates and weakened cementation. Additionally, heating was found to further accelerate the process of structural damage in MHBS.

期刊论文 2025-02-01 DOI: 10.1016/j.compgeo.2024.106943 ISSN: 0266-352X

To safely and effectively explore the natural methane hydrate, it is crucial to examine the mechanical behavior of methane hydrate-bearing sediments (MHBSs). Natural methane hydrate unevenly distributes in pores or bonds with soil particles in MHBS, changing the mechanical behavior of MHBS including stiffness, shear strength, and dilatancy. This paper presents an anisotropic critical state model for MHBS considering hydrate pore-filling and cementing effects. Based on the unified critical state model for both clay and sand, an equivalent hydrate ratio is defined to address pore-filling effect. Cohesive strength and its hardening law are introduced to characterize hydrate cementation. To describe the anisotropic behavior, the inherent anisotropy of soil particles and hydrates are modeled separately, and rotation hardening is introduced to describe the stress-induced anisotropy. Comparisons with existing triaxial tests of both synthetic and natural MHBS demonstrate that the proposed model comprehensively describes the mechanical behavior of MHBS. Detailed predictions indicate that hydrate pore-filling affects the hydrate-dependent stiffness and dilatancy of MHBS, which become more pronounced with increasing hydrate saturation. Cementing effect increases the initial stiffness and peak strength of MHBS. The pronounced influence of inherent anisotropic parameters on pre-peak stress-strain relation of MHBS is noted, and increasing hydrate saturation enhances the effect of hydrate anisotropy. These predictions contribute to a better understanding of the relation between hydrate morphologies and MHBS mechanical properties.

期刊论文 2025-01-01 DOI: 10.1002/nag.3873 ISSN: 0363-9061

The mechanics of methane hydrate-bearing sediments (MHBS) have been broadly investigated over recent years in the context of methane-gas production or climate-change effects. Their mechanical investigation has mainly been carried out using models constructed from experimental data obtained for laboratory-formed MHBS. Along with the dominant effects of hydrate saturation and morphology within the host soil pores, this study recognizes the effective pressure at which the hydrate is formed as a key factor in the MHBS mechanics. A state-of-the-art experimental study has been conducted in order to isolate the effect of the hydrate formation pressure, for use as a model parameter. Two generalized mechanical prediction models that incorporate the effect of the hydrate formation pressure are developed in this work: (a) an analytical shear strength prediction, and (b) an empiric graphical model for predicting volumetric changes along a given stress path. The models are related to a novel data representation which enables the analysis of a few individual test outcomes as a whole, through a volume-change mapping that describes the complex influence of the volumetric effect of hydrate in MHBS, under combined hydrostatic and deviatoric loading scenarios. In this study, we delve into a specific configuration of hydrate morphology, hydrate saturation, and host soil type, enabling a distinctive fundamental geotechnical investigation and the development of a conceptual modeling approach. The paper describes the approaches by which the MHBS properties can be extracted for other MHBS samples (than those examined in this work) having different host soils and hydrate pore-space morphologies.

期刊论文 2024-10-01 DOI: 10.1029/2024JB029217 ISSN: 2169-9313

This study explores the carbon stability in the Arctic permafrost following the sea-level transgression since the Last Glacial Maximum (LGM). The Arctic permafrost stores a significant amount of organic carbon sequestered as frozen particulate organic carbon, solid methane hydrate and free methane gas. Post-LGM sea-level transgression resulted in ocean water, which is up to 20 degrees C warmer compared to the average annual air mass, inundating, and thawing the permafrost. This study develops a one-dimensional multiphase flow, multicomponent transport numerical model and apply it to investigate the coupled thermal, hydraulic, microbial, and chemical processes occurring in the thawing subsea permafrost. Results show that microbial methane is produced and vented to the seawater immediately upon the flooding of the Arctic continental shelves. This microbial methane is generated by the biodegradation of the previously frozen organic carbon. The maximum seabed methane flux is predicted in the shallow water where the sediment has been warmed up, but the remaining amount of organic carbon is still high. It is less likely to cause seabed methane emission by methane hydrate dissociation. Such a situation only happens when there is a very shallow (similar to 200 m depth) intra-permafrost methane hydrate, the occurrence of which is limited. This study provides insights into the limits of methane release from the ongoing flooding of the Arctic permafrost, which is critical to understand the role of the Arctic permafrost in the carbon cycle, ocean chemistry and climate change. Arctic permafrost stores similar to 1,700 billion tons of organic carbon. If just a fraction of that melts, the escaping methane would become one of the world's largest sources of greenhouse gas and would severely impact the environment and the climate. Over the last similar to 18,000 years, a quarter of the stored organic carbon in the Arctic permafrost has been flooded by the rising, warm seas. This has melted the ice and degraded the permafrost. But what happens to the carbon pools? This study investigates the stability of the carbon in the Arctic permafrost following the flooding using a newly developed numerical model. Results show that microbial methane is generated and emitted to the seawater immediately following the flooding. This methane is produced by the biodegradation of the previously frozen organic carbon near the seafloor. The maximum methane emission is predicted in the shallow water near the coast where the sediment has been warmed up, but the remaining amount of organic carbon is still high. This study provides insights into the limits of methane release from the ongoing flooding of the Arctic permafrost, which is critical to understand the role of the Arctic permafrost in the carbon cycle, ocean chemistry and climate change. A numerical model is developed to simulate the coupled thermal, hydraulic, microbial and chemical processes in the thawing subsea permafrost The biodegradation of the ancient organic carbon in the thawing subsea permafrost results in seabed microbial methane emission Seabed methane emission is less likely to be caused by methane hydrate dissociation at the Arctic continental shelves

期刊论文 2024-02-01 DOI: 10.1029/2023GB007999 ISSN: 0886-6236

In bio-calcification, microbes precipitate calcium carbonate (CaCO3), forming versatile solid substances that promotes eco-friendly materials and reduce carbon emissions. Marine bacteria can generate bio-cements to strengthen dikes and combat coastal erosion. However, the role of marine bacteria in generating bio-cements for enhancing coastal structures and combating erosion is not fully understood. This study investigates the potential of CaCO3 precipitating bacteria isolated from methane hydrate-bearing marine sediments. Five calcifying marine bacteria were isolated using Christensen's urea agar from marine sediments collected from Gawadar coastal, Pakistan. Bacterial strains induced CaCO3 precipitation producing urease enzymes. Strains were identified as Pseudomonas putida, Bacillus altitudinis, Vibrio sp., Bacillus sp., and Vibrio plantisponsor. Energy-dispersive X-ray spectroscopy, scanning electron microscopy, and X-ray diffraction were applied for the identification and differentiation of calcite and vaterite precipitates. The growth of isolates and precipitation potential were observed optimum at 5% NaCl and pH 9.5-11. Bacillus altitudinis (ST4SD3) and Bacillus sp. (ST4SD1) produced more soluble Ca2+ (8532.53 mg/l and 7581.98 mg/l) as compare to other isolates at higher pH 10 and pH 11, favorable for CaCO3 precipitation. It is concluded that marine ureolytic bacteria possess significant potential for bio-cementation, which can stabilize methane hydrate-bearing sediments, improve soil properties, protect coastal regions from erosion, and crucial in the methane cycle, a greenhouse gas. We recommend further exploration of such bacteria's applications in marine construction and sediment stabilization to enhance the robustness and longevity of coastal infrastructures. Furthermore, such bacteria could also be beneficial in extracting gas from unconsolidated methane hydrates containing sediments.

期刊论文 2020-03-15 DOI: http://dx.doi.org/10.1016/j.pce.2024.103808 ISSN: 1474-7065

Methane (CH4) is produced in many natural systems that are vulnerable to change under a warming climate, yet current CH4 budgets, as well as future shifts in CH4 emissions, have high uncertainties. Climate change has the potential to increase CH4 emissions from critical systems such as wetlands, marine and freshwater systems, permafrost, and methane hydrates, through shifts in temperature, hydrology, vegetation, landscape disturbance, and sea level rise. Increased CH4 emissions from these systems would in turn induce further climate change, resulting in a positive climate feedback. Here we synthesize biological, geochemical, and physically focused CH4 climate feedback literature, bringing together the key findings of these disciplines. We discuss environment-specific feedback processes, including the microbial, physical, and geochemical interlinkages and the timescales on which they operate, and present the current state of knowledge of CH4 climate feedbacks in the immediate and distant future. The important linkages between microbial activity and climate warming are discussed with the aim to better constrain the sensitivity of the CH4 cycle to future climate predictions. We determine that wetlands will form the majority of the CH4 climate feedback up to 2100. Beyond this timescale, CH4 emissions from marine and freshwater systems and permafrost environments could become more important. Significant CH4 emissions to the atmosphere from the dissociation of methane hydrates are not expected in the near future. Our key findings highlight the importance of quantifying whether CH4 consumption can counterbalance CH4 production under future climate scenarios. Plain Language Summary Methane is a powerful greenhouse gas, second only to carbon dioxide in its importance to climate change. Methane production in natural environments is controlled by factors that are themselves influenced by climate. Increased methane production can warm the Earth, which can in turn cause methane to be produced at a faster rate - this is called a positive climate feedback. Here we describe the most important natural environments for methane production that have the potential to produce a positive climate feedback. We discuss how these feedbacks may develop in the coming centuries under predicted climate warming using a cross-disciplinary approach. We emphasize the importance of considering methane dynamics at all scales, especially its production and consumption and the role microorganisms play in both these processes, to our understanding of current and future global methane emissions. Marrying large-scale geophysical studies with site-scale biogeochemical and microbial studies will be key to this.

期刊论文 2018-03-01 DOI: 10.1002/2017RG000559 ISSN: 8755-1209
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-6条  共6条,1页