Snow distribution has been altered over the past decades under global warming, with a significant reduction in duration and extent of snow cover and an increase in unprecedented snowstorms across large areas in cold regions. The altered snow conditions are likely to have immediate (in winter) and carry-over or legacy (which an extended effect might continue in the following spring, summer and autumn) impacts on soil processes and functioning, but a quantification of the legacy effect of snow coverage alternation is still lacking. Furthermore, studies investigating the effect of snow cover changes on soil respiration, soil carbon pools and microbial activity are increasing, but contrasting results of different studies makes it difficult to assess the overall effect of snow cover changes and the underlying mechanisms, thus a systematic and comprehensive meta-analysis is required. In this study, we synthesized the results from 60 papers based on field snow manipulation experiments and conducted a meta-analysis to evaluate immediate and prolonged effects on eight variables related to soil carbon dynamics and microbial activity to snow coverage alternation. Results showed that snow removal had no significant effect on soil respiration, but increased dissolved organic carbon (DOC) (11.5%) and fungal abundance (32.0%). By contrast, snow addition significantly increased soil respiration (16.3%) and microbial biomass carbon (MBC) (6.6%). Snow addition had immediate and prolonged impacts on soil carbon dynamics and microbial activity lasting from winter to the following autumn, whereas an effect of snow removal on total organic carbon (TOC) and DOC was detectable only in the following spring. Snow depth, ecosystem and soil types determined the extent of the impact of snow treatments on soil respiration, DOC, MBC and microbial biomass nitrogen (MBN). Our findings provide critical insights into understanding how changes in snow coverage affect soil respiration and microbial activity. We suggest future field-based experiments to enhance our understanding the effect of climate change on soil processes and functioning in the winter and the following seasons.
2024-09-01 Web of ScienceA novel Streptomyces strain, designated 3_2(T), was isolated from soil under the black Gobi rock sample of Northwest China. The taxonomic position of this strain was revealed by a polyphasic approach. Comparative analysis of the 16S rRNA gene sequences indicated that 3_2(T) was closely related to the members of the genus Streptomyces, with the highest similarity to Streptomyces rimosus subsp. rimosus CGMCC 4.1438 (99.17%), Streptomyces sioyaensis DSM 40032 (98.97%). Strain 3_2(T) can grow in media up to 13% NaCl. The genomic DNA G + C content of strain 3_2(T) was 69.9%. We obtained the genomes of 22 Streptomyces strains similar to strain 3_2(T), compared the average nucleotide similarity, dDDH and average amino acid identity, and found that the genomic similarity of the new isolate 3_2(T) to all strains was below the threshold for interspecies classification. Chemotaxonomic data revealed that strain 3_2(T) possessed MK-9 (H-6) and MK-9 (H-8) as the major menaquinones. The cell wall contained LL-diaminopimelic acid (LL-DAP) and the whole-cell sugars were ribose and glucose. The major fatty acid methyl esters were iso-C-16:0 (23.6%) and anteiso-C-15:0 (10.4%). The fermentation products of strain 3_2(T) were inhibitory to Staphylococcus aureus and Bacillus thuringiensi. The genome of 3_2(T) was further predicted using anti-smash and the strain was found to encode the production of 41 secondary metabolites, and these gene clusters may be key to the good inhibitory activity exhibited by the strain. Genomic analysis revealed that strain 3_2(T) can encode genes that produce a variety of genes in response to environmental stresses, including cold shock, detoxification, heat shock, osmotic stress, oxidative stress, and these genes may play a key role in the harsh environment in which the strain can survive. Therefore, this strain represents a novel Streptomyces species, for which the name Streptomyces halobius sp. nov. is proposed. The type strain is 3_2(T) (= JCM 34935(T) = GDMCC 4.217(T)).
2022-02