共检索到 3

The additions of microbial organic fertilizer (MOF), a microbial inoculant (MI), and quicklime (Q) are considered to be sustainable practices to restore land that has been damaged by continuous cropping of pepper (Capsicum annuum L.). However, the combined effects of these three additives on pepper yield, soil chemical properties, and soil microbial communities were unclear. The experimental design consists of 13 treatment groups: the untreated soil (control); soil amended solely with three treatments for each of MOF (1875-5625 kg ha-1), MI (150-450 mL plant-1), and Q (1500-4500 kg ha-1); and soil amended with combinations of MOF, MI, and Q at three comparable concentrations. A significant increase in pepper fruit diameter, length, yield, and soil available nitrogen, phosphorus, and potassium contents occurs upon exclusive and combined applications of MOF, MI, and Q. Pepper yield was greatest (29.89% more than control values) in the combined treatment with concentrations of 1875 kg ha-1 MOF, 150 mL plant-1 MI, and 1500 kg ha-1 Q. The application of Q increased soil pH and reduced soil-fungal richness. The application of MOF, MI, and Q increased the relative abundance of bacterial genera and the complexity of bacterial and fungal co-occurrence networks compared with control levels. The combined application of MOF, MI, and Q resulted in the greatest microbial network complexity. A Mantel test revealed the key role of soil available nitrogen content and bacterial diversity in the regulation of pepper growth and yield. We conclude that the combined application of MOF, MI, and Q improves soil nutrient availability and modifies soil microbial community composition, significantly promoting plant growth and pepper yield during continuous cultivation.

期刊论文 2024-11-01 DOI: 10.3390/horticulturae10111142

Salvia miltiorrhiza , a widely used medicinal herb renowned for its properties in promoting blood circulation, removing blood stasis and alleviating pain, is currently facing quality degradation due to excessive heavy metal levels, posing a threat to medication safety. In order to investigate the effects of microbial inoculant, microalgae and biochar on the growth of Salvia miltiorrhiza under copper (Cu) stress, as well as its Cu absorption, antioxidant activity, active component contents and rhizosphere microbial community, a pot experiment was conducted. Salvia miltiorrhiza plants were cultivated in the soil containing 400 mg/kg of Cu for six months and treated with microbial inoculant, microalgae and biochar, either individually or in combination. Almost all soil amendment treatments led to an increase in root biomass. Notably, co -application of microbial inoculant and microalgae had the optimal effect with a 63.07 % increase compared to the group treated solely with Cu. Moreover, when microbial inoculant was applied alone or in combination with microalgae, the Cu content in plant roots was reduced by 19.29 % and 25.37 %, respectively, whereas other treatments failed to show a decreasing trend. Intriguingly, Cu stress increased the active component contents in plant roots, and they could also be enhanced beyond non -stress levels when microbial inoculant and microalgae were applied together or in combination with biochar. Analyses of plant antioxidant activity, soil properties and rhizosphere microorganisms indicated that these amendments may alleviate Cu stress by enhancing peroxidase activity, facilitating plant nutrient absorption, and enriching beneficial microorganisms capable of promoting plant growth and mitigating heavy metal induced damage. This study suggests that the combined application of microbial inoculant and microalgae can reduce Cu levels in Salvia miltiorrhiza while enhancing its quality under Cu stress.

期刊论文 2024-05-15 DOI: 10.1016/j.scitotenv.2024.171812 ISSN: 0048-9697

Chemical pesticides and fertilizers are used in agricultural production worldwide to prevent damage from plant pathogenic microorganisms, insects, and nematodes, to minimize crop losses and to preserve crop quality. However, the use of chemical pesticides and fertilizers can severely pollute soil, water, and air, posing risks to the environment and human health. Consequently, developing new, alternative, environment-friendly microbial soil treatment interventions for plant protection and crop yield increase has become indispensable. Members of the filamentous fungal genus Trichoderma (Ascomycota, Sordariomycetes, Hypocreales) have long been known as efficient antagonists of plant pathogenic microorganisms based on various beneficial traits and abilities of these fungi. This minireview aims to discuss the advances in the field of Trichoderma-containing multicomponent microbiological inoculants based on recent experimental updates. Trichoderma strains can be combined with each other, with other fungi and/or with beneficial bacteria. The development and field performance of such inoculants will be addressed, focusing on the complementarity, synergy, and compatibility of their microbial components.

期刊论文 2024-05-01 DOI: 10.1007/s11274-024-03965-5 ISSN: 0959-3993
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页