Under the background of climate change, freeze-thaw patterns tend to be turbulent: ecosystem function processes and their mutual feedback mechanisms with microorganisms in sensitive areas around the world are currently a hot topic of research. We studied changes of soil properties in alpine wetlands located in arid areas of Central Asia during the seasonal freeze-thaw period (which included an initial freezing period, a deep freezing period, and a thawing period), and analyzed changes in soil bacterial community diversity, structure, network in different stages with the help of high-throughput sequencing technology. The results showed that the alpha diversity of the soil bacterial community showed a continuous decreasing trend during the seasonal freeze-thaw period. The relative abundance of dominant bacterial groups (Proteobacteria (39.04%-41.28%) and Bacteroidota (14.61%-20.12%)) did not change significantly during the freeze-thaw period. At the genus level, different genera belonging to the same phylum dominated in different stages, or there were clusters of genera belonging to different phylum. For example, g_Ellin6067, g_unclassified_f_Geobacteraceae, g_unclassified_f_Gemmatimonadaceae coexisted in the same cluster, belonging to Proteobacteria, Desulfobacterota and Gemmatimonadota respectively, and their abundance increased significantly during the freezing period. This adaptive freeze-thaw phylogenetic model suggests a heterogeneous stress resistance of bacteria during the freeze-thaw period. In addition, network analysis showed that, although the bacterial network was affected to some extent by environmental changes during the initial freezing period and its recovery in the thawing period lagged behind, the network complexity and stability did not change much as a whole. Our results prove that soil bacterial communities in alpine wetlands are highly resistant and adaptive to seasonal freeze-thaw conditions. As far as we know, compared with short-term freeze-thaw cycles research, this is the first study examining the influence of seasonal freeze-thaw on soil bacterial communities in alpine wetlands. Overall, our findings provide a solid base for further investigations of biogeochemical cycle processes under future climate change.
Large amounts of carbon sequestered in permafrost on the Tibetan Plateau (TP) are becoming vulnerable to microbial decomposition in a warming world. However, knowledge about how the responsible microbial community responds to warming-induced permafrost thaw on the TP is still limited. This study aimed to conduct a comprehensive comparison of the microbial communities and their functional potential in the active layer of thawing permafrost on the TP. We found that the microbial communities were diverse and varied across soil profiles. The microbial diversity declined and the relative abundance of Chloroflexi, Bacteroidetes, Euryarchaeota, and Bathyarchaeota significantly increased with permafrost thawing. Moreover, warming reduced the similarity and stability of active layer microbial communities. The high-throughput qPCR results showed that the abundance of functional genes involved in liable carbon degradation and methanogenesis increased with permafrost thawing. Notably, the significantly increased mcrA gene abundance and the higher methanogens to methanotrophs ratio implied enhanced methanogenic activities during permafrost thawing. Overall, the composition and functional potentials of the active layer microbial community in the Tibetan permafrost region are susceptible to warming. These changes in the responsible microbial community may accelerate carbon degradation, particularly in the methane releases from alpine permafrost ecosystems on the TP. Warming-induced permafrost thawing increased the abundance of anaerobic microorganisms and functional genes involved in labile carbon degradation and methane cycles, which could accelerate soil carbon degradation on TP.