在列表中检索

共检索到 2

Soil supports life by serving as a living, breathing fabric that connects the atmosphere to the Earth's crust. The study of soil science and pedology, or the study of soil in the natural environment, spans scales, disciplines, and societies worldwide. Soil science continues to grow and evolve as a field given advancements in analytical tools, capabilities, and a growing emphasis on integrating research across disciplines. A pressing need exists to more strongly incorporate the study of soil, and soil scientists, into research networks, initiatives, and collaborations. This review presents three research areas focused on questions of central interest to scientists, students, and government agencies alike: 1) How do the properties of soil influence the selection of habitat and survival by organisms, especially threatened and endangered species struggling in the face of climate change and habitat loss during the Anthropocene? 2) How do we disentangle the heterogeneity of abiotic and biotic processes that transform minerals and release life-supporting nutrients to soil, especially at the nano-to microscale where mineral-water-microbe interactions occur? and 3) How can soil science advance the search for life and habitable environments on Mars and beyond-from distinguishing biosignatures to better utilizing terrestrial analogs on Earth for planetary exploration? This review also highlights the tools, resources, and expertise that soil scientists bring to interdisciplinary teams focused on questions centered belowground, whether the research areas involve conservation organizations, industry, the classroom, or government agencies working to resolve global chal-lenges and sustain a future for all.

期刊论文 2023-02-01 DOI: 10.1016/j.earscirev.2022.104247 ISSN: 0012-8252

Climate change in Arctic landscapes may increase freeze-thaw frequency within the active layer as well as newly thawed permafrost. Freeze-thaw is a highly disruptive process that can deform soil pores and alter the architecture of the soil pore network with varied impacts to water transport and retention, redox conditions, and microbial activity. Our objective was to investigate how freeze-thaw cycles impacted the pore network of newly thawed permafrost aggregates to improve understanding of what type of transformations can be expected from warming Arctic landscapes. We measured the impact of freeze-thaw on pore morphology, pore throat diameter distribution, and pore connectivity with X-ray computed tomography (XCT) using six permafrost aggregates with sizes of 2.5 cm3 from a mineral soil horizon (Bw; 28-50 cm depths) in Toolik, Alaska. Freeze-thaw cycles were performed using a laboratory incubation consisting of five freeze-thaw cycles (-10 C to 20 C) over five weeks. Our findings indicated decreasing spatial connectivity of the pore network across all aggregates with higher frequencies of singly connected pores following freeze-thaw. Water-filled pores that were connected to the pore network decreased in volume while the overall connected pore volumetric fraction was not affected. Shifts in the pore throat diameter distribution were mostly observed in pore throats ranges of 100 mu m or less with no corresponding changes to the pore shape factor of pore throats. Responses of the pore network to freeze-thaw varied by aggregate, suggesting that initial pore morphology may play a role in driving freeze-thaw response. Our research suggests that freeze-thaw alters the microenvironment of permafrost aggregates during the incipient stage of deformation following permafrost thaw, impacting soil properties and function in Arctic landscapes undergoing transition.

期刊论文 2022-04-01 DOI: 10.1016/j.geoderma.2021.115674 ISSN: 0016-7061
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页