This work uses a mixture of observations from surface remote sensing (AERONET) and satellite remote sensing (OMI) to uniquely compute the atmospheric column loading of black carbon (BC) mass concentration density (MCD) and number concentration density (NCD) on a grid-by-grid, day-by-day basis at 0.25 degrees x0.25 degrees over rapidly developing and biomass burning (BB) impacted regions in South, Southeast, and East Asia. This mixture of observations is uniformly analyzed based on OMI NO2 retrievals, OMI Near ultraviolet band absorption aerosol optical depth and single scattering albedo (SSA), and AERONET visible and near-infrared band SSA observations, in connection with an inversely applied MIE mixing model approach. This method uniquely solves for the unbiased spatial and temporal domains based on variance maximization of daily NO2. These locations in space and time are then used to quantify the distribution of all possible individual particle core and refractory shell sizes as constrained by all band-by-band observations of SSA from AERONET. Finally, the range of NCD and MCD are computed from the constrained range of per-particle core and refractory shell size on a grid-by-grid and day-byday basis. The maps of MCD and NCD are consistent in space and time with known urban, industrial, and BB sources. The statistical distributions are found to be non-normal, with the region-wide mean, 25th, 50th, and 75th percentile MCD [mg/m2] of 90.3, 56.1, 81.1, and 111 respectively, and NCD [x1012 particles/m2] of 8.76, 4.63, 7.39, and 11.3 respectively. On a grid-by-grid basis, a significant amount of variation is found, particularly over Myanmar, Laos, northern Thailand, and Vietnam, with this subregional mean, 25th, 50th, and 75th MCD [mg/m2] of 90.7, 56.1, 81.3, and 112 respectively and NCD [x1012 particles/m2] of 9.66, 5.49, 8.33, and 12.3 respectively. On a day-to-day basis, events are determined 121 days in 2016, during which the computed statistics of MCD and NCD have mean and uncertainty ranges which scale with each other. However, there are 11 days where the uncertainty ratio of NCD values is larger than 1 while the uncertainty ratio of MCD is small, and 5 days where the reverse is observed, indicating that the particle size is strongly atypical on these days, consistent with mixed aerosol sources, a substantial change in the aerosol aging, or other such factors including a substantial region of overlap between BB and urban sources. The high values observed from March to May lead to an extended BB season as compared to previous work focusing on fire radiative power, NO2, and models, which show a shorter season (usually ending in early April). The results are consistent with BC being able to transport significant distances. The new approach is anticipated to provide support for improving radiative forcing calculations, estimating emissions inventories, and providing a basis by which models can compare against observations.
Shortcomings and uncertainties in the model representation of atmospheric transformations (the aging) of organic aerosol (OA) have long been identified as one of the potential sources of considerable uncertainty in OA simulations with both global and regional models. However, the impact of this uncertainty on predictions of radiative and climate effects of both anthropogenic and biomass burning (BB) aerosol yet needs to be understood. This study examines the importance of the model representation of OA for simulating the direct radiative effect (DRE) of Siberian BB aerosol in the eastern Arctic. We employ a regional coupled chemistry-meteorology model and a global fire emission database to simulate the optical properties and DRE of BB aerosol emitted from intense Siberian fires in July 2016 and compare the DRE estimates that were obtained using two alternative representations of Siberian BB OA. One of them is a default OA representation that predicts very little secondary OA (SOA), and another involves a simple original OA parameterization that has been developed previously within the volatility basis set (VBS) framework and features a strong production of SOA. The simulations of the aerosol optical properties are evaluated against satellite observations of the aerosol optical depth (AOD) in Siberia and the Arctic as well as against values of the single scattering albedo derived from in situ observations of the aerosol absorption and scattering coefficients at four Arctic sites. While the simulations with the default OA representation are found to strongly underestimate AOD both in Siberia and the eastern Arctic, the use of the VBS parameterization considerably improves the agreement between the AOD simulations and observations in both regions. Simulations of the single scattering albedo are found to be overall rather adequate with both representations. Differences in the OA representations are found to result in major differences in the estimates of the DRE of Siberian BB aerosol in the eastern Arctic. Specifically, although the simulations with both representations predict that the DRE is predominantly negative at the top of the atmosphere (TOA), the magnitude of the mean DRE is found to be more than twice as large (6.0 W m-2) with the VBS parameterization than with the default OA representation (2.8 W m-2). An even larger difference (by a factor of 3.5) is found between the estimates of the DRE over the snow-or ice-covered areas. The different treatments of the BB OA evolution are associated also with considerably different contributions of black and brown carbon to the DRE estimates. Overall, our results indicate that model estimates of the DRE of Siberian BB aerosol in the eastern Arctic are strongly sensitive to the assumptions regarding the evolution of OA in Siberian BB plumes and that the SOA formation in these plumes is one of the major factors determining the magnitude of the radiative effects of Siberian BB aerosol in the real atmosphere.
The role of atmospheric aerosols in earth's radiative balance is crucial. A thorough knowledge about the spectral optical properties of various types of aerosols is necessary to quantify the net radiative forcing produced by aerosol-light interactions. In this study, we exploited an open-source inverse algorithm based on the Python-PyMieScatt survey iteration method, to retrieve the wavelength dependent Mie-equivalent complex refractive indices of ambient aerosols. This method was verified by obtaining the broadband complex refractive indices of monodisperse polystyrene latex spheres and polydisperse common salt aerosols, using laboratory data collected with a supercontinuum broadband cavity enhanced extinction spectrometer operating in the 420-540 nm wavelength range. Field measurements of ambient aerosol were conducted using a similar cavity enhanced extinction spectrometer (IBBCEES) operating in the wavelength range of 400-550 nm, a multi-wavelength aethalometer, and a scanning mobility particle sizer, in Changzhou city, People's Republic of China. The absorption coefficients for the entire wavelength range were retrieved using the absorption Angstrom exponents calculated from a pair of measured absorption coefficients at known wavelengths. The survey iteration method takes scattering and absorption coefficients, wavelength, and size distributions as inputs; and it calculates the Mie-equivalent wavelength dependent complex refractive index (RI = n +/- ik) and estimated errors. The retrieved field RI values ranged from 1.66 <= n <= 1.80 to 1.65 <= n <= 1.86 and from 0.036 <= k <= 0.038 to 0.062 <= k <= 0.067 in the wavelength range (400-550 nm), for low and high aerosol loading conditions, respectively. Additionally, we derived the spectral dependencies of scattering and absorption coefficients along with the n and k Angstrom exponents (AE). The nAE and kAE estimated values suggest a stronger wavelength dependence for aerosol light scattering compared to absorption, and a decreasing trend for the spectrally dependent single scattering albedo during both loading conditions. The extremum of errors in the retrieved n and k values were quantified by considering (a) uncertainties in input parameters in the broad spectral region (400-550 nm), (b) using CAPS extinction values at 530 nm and (c) an estimated size distribution incorporating the coarse particles (at 530 nm).
We present the first box model simulation results aimed at identification of possible effects of the atmospheric photochemical evolution of the organic component of biomass burning (BB) aerosol on the aerosol radiative forcing (ARF) and its efficiency (ARFE). The simulations of the dynamics of the optical characteristics of the organic aerosol (OA) were performed using a simple parameterization developed within the volatility basis set framework and adapted to simulate the multiday BB aerosol evolution in idealized isolated smoke plumes from Siberian fires (without dilution). Our results indicate that the aerosol optical depth can be used as a good proxy for studying the effect of the OA evolution on the ARF, but variations in the scattering and absorbing properties of BB aerosol can also affect its radiative effects, as evidenced by variations in the ARFE. Changes in the single scattering albedo (SSA) and asymmetry factor, which occur as a result of the BB OA photochemical evolution, may either reduce or enhance the ARFE as a result of their competing effects, depending on the initial concentration OA, the ratio of black carbon to OA mass concentrations and the aerosol photochemical age in a complex way. Our simulation results also reveal that (1) the ARFE at the top of the atmosphere is not significantly affected by the OA oxidation processes compared to the ARFE at the bottom of the atmosphere, and (2) the dependence of ARFE in the atmospheric column and on the BB aerosol photochemical ages almost mirrors the corresponding dependence of SSA.