Atmospheric particulate matter (PM) as light-absorbing particles (LAPs) deposited to snow cover can result in early onset and rapid snow melting, challenging management of downstream water resources. We identified LAPs in 38 snow samples (water years 2013-2016) from the mountainous Upper Colorado River basin by comparing among laboratory-measured spectral reflectance, chemical, physical, and magnetic properties. Dust sample reflectance, averaged over the wavelength range of 0.35-2.50 mu m, varied by a factor of 1.9 (range, 0.2300-0.4444) and was suppressed mainly by three components: (a) carbonaceous matter measured as total organic carbon (1.6-22.5 wt. %) including inferred black carbon, natural organic matter, and carbon-based synthetic, black road-tire-wear particles, (b) dark rock and mineral particles, indicated by amounts of magnetite (0.11-0.37 wt. %) as their proxy, and (c) ferric oxide minerals identified by reflectance spectroscopy and magnetic properties. Fundamental compositional differences were associated with different iron oxide groups defined by dominant hematite, goethite, or magnetite. These differences in iron oxide mineralogy are attributed to temporally varying source-area contributions implying strong interannual changes in regional source behavior, dust-storm frequency, and (or) transport tracks. Observations of dust-storm activity in the western U.S. and particle-size averages for all samples (median, 25 mu m) indicated that regional dust from deserts dominated mineral-dust masses. Fugitive contaminants, nevertheless, contributed important amounts of LAPs from many types of anthropogenic sources.
2025-01-28 Web of ScienceLight absorbing particles (LAPs) present high absorbance and contribute to reducing the snow albedo when deposited on snow surfaces. This deposition can be caused by aerosols transported from natural or anthropogenic, either distant or nearby sources. In this study, snow was artificially contaminated with soil samples collected in the Central Andes (near El Yeso dam) to simulate the most common nearby source of Mineral Dust (MD) deposition onto snow surface. Andean soil samples previously conditioned were characterized through Single Particle Optical Sizing (SPOS), X-ray diffraction (XRD) analysis, and Scanning Electron Microscope (SEM) for the determination of optical properties. Spectral snow albedo was measured in situ with a spectroradiometric system. To evaluate the heterogeneity of the particle distribution over the snow surface, aerial photographs were taken with a drone to apply a visual color segmentation of the surface and to determine the equivalent MD concentration. Experimental snow albedo was compared with theoretical values obtained with the OptiPar radiative transfer model. Inputs for the model were: the MD refractive index (calculated from the mineralogical composition and morphology of MD) and particle size, cloudiness, snow density, surface roughness, snow grain size, and LAPs concentration (obtained from the snow samples collected during the experiments and analyzed in the laboratory). Small black carbon concentrations were found in natural snow and considered in the simulations. Spectral albedo measurements showed high albedo reductions in the UV and VIS range (300-800 nm), being less significant in the NIR range (800-1700 nm). A nonlinear behavior was observed in broadband albedo when increasing MD concentration. For lower values of MD concentration (lower than 1500 mg center dot kg (-1) ), a significant albedo reduction rate of 0.1 units per 1000 mg center dot kg (-1) was found, while at higher concentrations (> 3500 mg center dot kg (-1) ), such reduction tends to the minimum. Simulated values with OptiPar are in agreement with measured albedo, but some differences are observed, probably due to the refractive index considered, the snow surface roughness, and the non-uniform MD concentration in snow.
2024-09-15 Web of ScienceSources and implications of black carbon (BC) and mineral dust (MD) on two glaciers on the central Tibetan Plateau were estimated based on in situ measurements and modeling. The results indicated that BC and MD accounted for 11 +/- 1% and 4 +/- 0% of the albedo reduction relative to clean snow, while the radiative forcing varied between 11 and 196 and 1-89 W m(-2), respectively. Assessment of BC and MD contributions to the glacier melt can reach up 88 to 434 and 35 to 187 mm w.e., respectively, contributing 9-23 and 4-10% of the total glacier melt. A footprint analysis indicated that BC and MD deposited on the glaciers originated mainly from the Middle East, Central Asia, North China and South Asia during the study period. Moreover, a potentially large fraction of BC may have originated from local and regional fossil fuel combustion. This study suggests that BC and MD will enhance glacier melt and provides a scientific basis for regional mitigation efforts.
2024-09Through a comprehensive investigation into the historical profiles of black carbon derived from ice cores, the spatial distributions of light-absorbing impurities in snowpit samples, and carbon isotopic compositions of black carbon in snowpit samples of the Third Pole, we have identified that due to barriers of the Himalayas and remove of wet deposition, local sources rather than those from seriously the polluted South Asia are main contributors of light-absorbing impurities in the inner part of the Third Pole. Therefore, reducing emissions from residents of the Third Pole themselves is a more effective way of protecting the glaciers of the inner Third Pole in terms of reducing concentrations of light-absorbing particles in the atmosphere and on glaciers.
2024-08-01Rapid retreat and darkening of most glaciers in the Tibetan Plateau (TP) are enhanced by the deposition of lightabsorbing particles (LAPs). Here, we provided new knowledge on the estimation of albedo reduction caused by black carbon (BC), water-insoluble organic carbon (WIOC), and mineral dust (MD), based on a comprehensive study of snowpit samples from ten glaciers across the TP collected in the spring of 2020. According to the albedo reductions caused by the three LAPs, the TP was divided into three sub-regions: the eastern and northern margins, Himalayas and southeastern TP, and western to inner TP. Our findings indicated that MD had a dominant role in causing snow albedo reductions across the western to inner TP, with comparable effects to WIOC but stronger effects than BC in the Himalayas and southeastern TP. BC played a more important role in the eastern and northern margins of the TP. In conclusion, the findings of this study emphasize not only the important role of MD in glacier darkening across majority of the TP but also the influence of the WIOC in enhancing glacier melting which indicates the dominant contribution of non-BC components in the LAP-related glacier melting of the TP.
2023-09-15 Web of ScienceThis article investigates the snow albedo changes in Colombian tropical glaciers, namely, Sierra Nevada de Santa Marta (SNSM), Sierra Nevada del Cocuy (NSC), Nevado del Ruiz (NDR), Nevado Santa Isabel (NDS), Nevado del Tolima (NDT), and Nevado del Huila (NDH). They are associated with the possible mineral dust deposition from the Sahara Desert during the June and July months using snow albedo (SA), snow cover (SC), and land surface temperature (LST) from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra and Aqua satellites. And mineral dust (MD) from The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), both of them during 2000-2020. Results show the largest snow albedo reductions were observed at 39.39%, 32.1%, and 30.58% in SNC, SNSM, and NDR, respectively. Meanwhile, a multiple correlation showed that the glaciers where MD contributed the most to SA behavior were 35.4%, 24%, and 21.4% in NDS, NDC, and NDR. Results also display an increasing trend of dust deposition on Colombian tropical glaciers between 2.81 x 10-3 & mu;g & BULL;m-2 & BULL;year-1 and 6.58 x 10-3 & mu;g & BULL;m-2 & BULL;year-1. The results may help recognize the influence of Saharan dust on reducing snow albedo in tropical glaciers in Colombia. The findings from this study also have the potential to be utilized as input for both regional and global climate models. This could enhance our comprehension of how tropical glaciers are impacted by climate change.
2023-09-01 Web of ScienceMineral dust aerosols over the Himalayas are assessed using polarization-resolved observations of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite over 11 years (2006-2018). The extinction coefficient due to dust aerosols is retrieved using observations of the depolarization ratio which gives the relative contribution of dust aerosols in the scattering volume. Dust extinction coefficients show significant regional and seasonal variation over the Himalayas. High dust loading is observed during the pre-monsoon season (March-May) whereas dust loading is low during the summer monsoon season (June-September). This is due to the reduced dust transport associated with the weak westerlies that prevailed over the Himalayas. Regionally, the mid-Himalayas is characterized by the highest dust extinction coefficient with a 10-fold increase as the season changes from winter (December-February) to pre-monsoon (March-May). Polluted dust (dust combined with anthropogenic aerosols) contributes to 64-74% of total aerosols over the Himalayas. Dry deposition causes a substantial amount of dust aerosols (1-31 mg m(-2) day(-1)) to be deposited over the Himalayas, reducing the albedo by 0.3% on fresh snow and up to 2.7% on aged snow, causing a radiative forcing of 0.38-23.7 Wm(-2) at the top of the atmosphere. The Himalayan cryosphere may therefore experience large warming leading to snow melting and enhanced reduction in snow cover.
2023-03-01 Web of ScienceDust transport and spatial distribution are poorly represented in current global climate models (GCMs) including the Community Atmosphere Model version 5 (CAM5). Particularly, models lack explicit representation of super-coarse dust, which may have important implications for dust radiative forcing and impacts on biogeochemistry. A nine-mode version of the modal aerosol model (MAM9) has been developed to address these issues. In this new aerosol scheme, four dust modes have been designed to treat dust particles of sizes up to 20 mu m. The MAM9-simulated results are compared with those from the default four-mode version of MAM (MAM4) and also with the in situ surface measurements of dust concentration and deposition flux, satellite-retrieved dust extinction profile, and in situ vertical measurements of dust concentrations from the NASA Atmosphere Tomography Mission (ATom). Overall, MAM9 improves the dust representation in remote regions while maintaining reasonably good results near the dust source regions. In addition, MAM9 reduces the fine dust burden and increases the coarse dust burden globally. The increased coarse dust burden has slightly increased the dust direct radiative effect by 0.01 W m(-2) while it enhanced dust indirect radiative effect by 0.36 W m(-2), globally.
2022-07-01 Web of ScienceTropical glaciers are extremely sensitive to changes of climate variables. Their response to climate change is complex and depends on multiple mechanisms affecting their mass and energy balance, including deposition of light absorbing particles (LAPs) from the atmosphere on snow and ice. Such particles can reduce glaciers surface albedo, thus enhancing the melting process. LAPs include carbonaceous particles (black carbon -BC and organic carbon -OC) and mineral dust aerosol (MDA). Although their relevance in global cryosphere, LAPs observations in the Andes tropical glacier areas are limited and sparse. This review aims at providing a critical evaluation of available data on LAPs in South America tropical glaciers, and highlights research gaps that will help to improve our understanding of natural processes and anthropogenic emissions impacts on the cryosphere of the region.In South American tropical glaciers, LAPs measurements in surface snow are mainly focused in the Cordillera Blanca and limited information are available about their chemical composition (carbonaceous or mineral components), while dust ice core records have been investigated in several sectors of the Andes, including in the Cordillera Blanca, Cordillera Oriental, and Cordillera Real. Remote and field observations in South American tropical glaciers indicate that LAPs might explain a significant fraction of snow albedo variability, however snow albedo reduction from modelling studies varies significantly depending on LAPs concentration and composition. Carbonaceous LAPs sources in South America are dominated by BC emissions from open fires, linked to agricultural and land clearing activities, peaking in the southern hemisphere dry season (August-October). Natural and anthropogenic dust emissions are potentially relevant contributors of LAPs on the Andes glaciers, as well. Satellite and in-situ measurements were deployed to investigate transport episodes of carbonaceous and mineral particles from lower altitudes towards the Andean glaciers. Nevertheless, the small number of atmospheric records of BC, OC, and MDA does not allow a systematic understanding of transport and deposition processes of such species in the region.
2022-06-01 Web of SciencePrevious studies have indicated that black carbon (BC) potentially induces snow albedo reductions across northern China. However, the effects of other light-absorbing particles (LAPs, e.g., mineral dust, MD), snow grain shape, or BC-snow mixing state on snow albedo have been largely ignored. Here we evaluate the BC- and MDinduced snow albedo reductions and radiative forcings (RFs) using an updated Snow, Ice, and Aerosol Radiation radiative transfer model, considering all of the potential factors that can be derived from the field observations across northern China. The results highlight that the LAP-induced albedo reductions for nonspherical snow grains are 2%-30% less than those for spherical grains. Furthermore, BC-snow internal mixing can significantly enhance albedo reduction by a factor of 1.42-1.48 relative to external mixing, with snow grain radius ranging from 100 to 1000 mu m. The mean regional BC + MD-induced snow albedo reductions are amplified by the increase of snow grain radius, ranging from 0.012 to 0.123 for fresh snow to 0.016-0.227 for old snow. Finally, we discuss the relative contributions of BC and MD to the albedo reductions and RFs, highlighting the dominant role of BC in reducing snow albedo across northern China.
2022-05-15 Web of Science