Glacial changes are crucial to regional water resources and ecosystems in the Sawir Mountains. However, glacial changes, including the mass balance and glacial meltwater of the Sawir Mountains, have sparsely been reported. Three model calibration strategies were constructed including a regression model based on albedo and in-situ mass balance of Muz Taw Glacier (A-Ms), regression model based on albedo and geodetic mass balance of valley, cirque, and hanging glaciers (A-Mr), and degree-day model (DDM) to obtain a reliable glacier mass balance in the Sawir Mountains and provide the latest understanding in the contribution of glacial meltwater runoff to regional water resources. The results indicated that the glacial albedo reduction was significant from 2000 to 2020 for the entire Sawir Mountains, with a rate of 0.015 (10a)- 1, and the spatial pattern was higher in the east compared to the west. Second, the three strategies all indicated that the glacier mass balance has been continuously negative during the past 20 periods, and the average annual glacier mass balance was -1.01 m w.e. Third, the average annual glacial meltwater runoff in the Sawir Mountains from 2000 to 2020 was 22 x 106 m3, and its
2024-09-20 Web of ScienceA number of global surface soil moisture (SM) datasets have been retrieved from the L-band frequency Soil Moisture Active Passive (SMAP) and the Soil Moisture and Ocean Salinity (SMOS) missions to study the terrestrial water, energy, and carbon cycles. This paper presents the performance of the recently developed 9 km global SMAP product (hereafter SMAP-INRAE-BORDEAUX, SMAP-IB9). The product retrieves SM from the 9 km SMAP radiometric products using the forward model (L-MEB, L-band Microwave Emission of the Biosphere) of SMOS INRA-CESBIO (SMOS-IC) and SMOS L2 algorithms. We inter-compared SMAP-IB9 with two other products with a similar grid resolution (similar to 10 km): the SMAP Enhanced Level-3 SM dataset (SMAP-E) and the enhanced global dataset for the land component of the fifth generation of European reanalysis (ERA5-Land) with the main objective of assessing the discrepancy in accuracy between remotely sensed and model SM datasets. We found that ERA5-Land and SMAP-IB9 SM had the overall highest correlations (R = 0.62(+/- 0.15) for ERA5-Land vs. 0.60 (+/- 0.17) for SMAP-IB9 and 0.50(+/- 0.15) for SMAP-E) by comparing with the International Soil Moisture Network (ISMN) in-situ measurements from 22 networks. ERA5-Land showed better performances in the forest areas where SMAP-IB9 and SMAP-E still showed high potential in detecting the time variations of the observed SM, particularly in terms of median correlation values (0.62(+/- 0.18) for SMAP-IB9 vs. 0.66(+/- 0.16) for ERA5-and). The discrepancy in R between satellite and model SM products that were reported in some past studies has decreased to statistically insignificant levels over time. For instance, in the non-forest areas, we found that the latest versions of the SMAP SM products (SMAP-E and SMAP-IB9) had relatively comparable performances with ERA5-Land with regard to median ubRMSE (0.07(+/- 0.02) m(3)/m(3) for both SMAP-E and ERA5-Land) and R (0.59 (+/- 0.16) for SMAP-IB9 vs. 0.61(+/- 0.15) for ERA5-Land), respectively.
2024-01The impact of aerosols, especially the absorbing aerosols, in the Himalayan region is important for climate. We closely examine ground-based high-quality observations of aerosol characteristics including radiative forcing from several locations in the Indo-Gangetic Plain (IGP), the Himalayan foothills and the Tibetan Plateau, relatively poorly studied regions with several sensitive ecosystems of global importance, as well as highly vulnerable large populations. This paper presents a state-of-the-art treatment of the warming that arises from these particles, using a combination of new measurements and modeling techniques. This is a first-time analysis of its kind, including ground-based observations, satellite data, and model simulations, which reveals that the aerosol radiative forcing efficiency (ARFE) in the atmosphere is clearly high over the IGP and the Himalayan foothills (80-135 Wm(-2) per unit aerosol optical depth (AOD)), with values being greater at higher elevations. AOD is >0.30 and single scattering albedo (SSA) is similar to 0.90 throughout the year over this region. The mean ARFE is 2-4 times higher here than over other polluted sites in South and East Asia, owing to higher AOD and aerosol absorption (i.e., lower SSA). Further, the observed annual mean aerosol induced atmospheric heating rates (0.5-0.8 Kelvin/day), which are significantly higher than previously reported values for the region, imply that the aerosols alone could account for >50 % of the total warming (aerosols + greenhouse gases) of the lower atmosphere and surface over this region. We demonstrate that the current state-of-the-art models used in climate assessments significantly underestimate aerosol-induced heating, efficiency and warming over the Hindu Kush - Himalaya - Tibetan Plateau (HKHTP) region, indicating a need for a more realistic representation of aerosol properties, especially of black carbon and other aerosols. The significant, regionally coherent aerosol induced warming that we observe in the high altitudes of the region, is a significant factor contributing to increasingair temperature, observed accelerated retreat of the glaciers, and changes in the hydrological cycle and precipitation patterns over this region. Thus, aerosols are heating up the Himalayan climate, and will remain a key factor driving climate change over the region.
2023-10-10 Web of Science