共检索到 3

Root-lesion nematodes (Pratylenchus spp.) are significant plant parasites, causing substantial crop damage worldwide. This study aimed to characterize Pratylenchus spp. in New Zealand maize fields using molecular techniques and map their prevalence. Soil sampling from 24 maize fields across the North and South Islands provided 381 composite samples. Root-lesion nematodes were extracted using the sieving-centrifugal-sugar flotation method and differentiated into five morphospecies. Molecular characterization involved direct partial sequencing of the D2/D3 28S rDNA, ITS rDNA, and COX1 mtDNA regions using Sanger technology from a single nematode. Five Pratylenchus species were identified: P. neglectus, P. crenatus, P. thornei, P. penetrans, and P. pratensis, confirmed by phylogenetic analysis. Prevalence mapping showed P. neglectus and P. crenatus in all sampled fields, while P. thornei, P. penetrans, and P. pratensis were more localized. This study is the first to report these Pratylenchus species on maize in New Zealand and provides the first partial sequences of the D2/D3, COX1, and ITS regions for these species on maize in New Zealand. The findings highlight the diversity of Pratylenchus populations in New Zealand maize fields and emphasize the need for region-specific management strategies to mitigate crop damage.

期刊论文 2025-01-10 DOI: 10.1093/lambio/ovae140 ISSN: 0266-8254

This study investigates the efficacy of Trichoderma spp. and Bacillus spp., as well as their gamma radiation-induced mutants, as potential biological control agents against Meloidogyne javanica (Mj) in tomato plants. The research encompasses in vitro assays, greenhouse trials, and molecular identification methodologies to comprehensively evaluate the biocontrol potential of these agents. In vitro assessments reveal significant nematicidal activity, with Bacillus spp. demonstrating notable effectiveness in inhibiting nematode egg hatching (16-45%) and inducing second-stage juvenile (J2) mortality (30-46%). Greenhouse trials further confirm the efficacy of mutant isolates, particularly when combined with chitosan, in reducing nematode-induced damage to tomato plants. The combination of mutant isolates with chitosan reduces the reproduction factor (RF) of root-knot nematodes by 94%. By optimizing soil infection conditions with nematodes and modifying the application of the effective compound, the RF of nematodes decreases by 65-76%. Molecular identification identifies B. velezensis and T. harzianum as promising candidates, exhibiting significant nematicidal activity. Overall, the study underscores the potential of combined biocontrol approaches for nematode management in agricultural settings. However, further research is essential to evaluate practical applications and long-term efficacy. These findings contribute to the development of sustainable alternatives to chemical nematicides, with potential implications for agricultural practices and crop protection strategies.

期刊论文 2024-08-01 DOI: 10.1038/s41598-024-68365-z ISSN: 2045-2322

Root-knot nematodes were discovered in severely declining creeping bentgrass putting greens at a golf course in Indian Wells, Riverside County, California. The exhibited disease symptoms included chlorosis, stunted growth, and dieback. Based on morphological examination and measurements of J2 females and males, it was suggested that the causal pathogen was Meloidogyne marylandi. This identification was confirmed by analysis of the D2-D3 expansion segments of 28S rRNA and COI gene sequences. The host status of 28 plant species was evaluated in greenhouse trials. All tested monocots, except rye and Allium species, were found to be hosts, while no reproduction occurred on dicots. Temperature-tank experiments helped determine that the life cycle of M. marylandi was completed between 17-35 degrees C, with a base temperature of 8.3 degrees C and a required heat sum of 493 degree-days (DD). In greenhouse trials in pasteurized soil and near-ideal growing conditions, M. marylandi did not cause significant growth reduction of creeping bentgrass cv. Penn A-4, even at very high J2 inoculation densities. It is highly probable that other biotic and abiotic factors contributed to the observed putting green damage.

期刊论文 2024-03-01 DOI: 10.2478/jofnem-2024-0046 ISSN: 0022-300X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页