The morphology of sheep wool applied as organic fertilizer biodegraded in the soil was examined. The investigations were conducted in natural conditions for unwashed waste wool, which was rejected during sorting and then chopped into short segments and wool pellets. Different types of wool were mixed with soil and buried in experimental plots. The wool samples were periodically taken and analyzed for one year using Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray Spectroscopy (EDS). During examinations, the changes in the fibers' morphology were observed. It was stated that cut wool and pellet are mechanically damaged, which significantly accelerates wool biodegradation and quickly destroys the whole fiber structure. On the contrary, for undamaged fibers biodegradation occurs slowly, layer by layer, in a predictable sequence. This finding has practical implications for the use of wool as an organic fertilizer, suggesting that the method of preparation can influence its biodegradation rate. (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(SEM)(sic)(sic)(sic)(sic)(sic)X(sic)(sic)(sic)(sic)(EDS)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).
Soil creep is a slow type of mass movement that, despite its low velocity, can significantly influence slope stability and landscape evolution over time. Understanding its mechanisms and spatial variability is essential for assessing slope stability. However, obtaining high-quality long-term data on creep activity remains a challenge. Dendrogeomorphic methods offer a promising approach to reconstruct past creep movements, but their application to shallow creep processes still requires further refinement. Therefore, this research undertakes a dendrogeomorphic analysis of shallow creep movements on flysch rock slopes, utilizing tree-ring eccentricity as an indicator of this geomorphic process. A total of 136 increment cores from 68 Norway spruce (Picea abies (L.) H. Karst.) trees were analysed, revealing the spatio-temporal dynamics of shallow creep and its relationship with slope morphometry and weathering mantle thickness. The eccentricity values were spatially interpolated to visualize the evolution of creep activity over decades, which showed its significant spatial variability. Statistical analyses, including Pearson's and Spearman's correlation coefficients, were employed to examine the relationships between tree-ring eccentricity and various environmental factors. Results indicated that tree age influences the sensitivity to creep signals, with older trees showing increased eccentricity, suggesting a heightened response to creep movements. The study also explored the impact of precipitation on creep activity, identifying a weak, non-significant positive relationship. This comprehensive analysis enhances the understanding of shallow creep mechanisms and contributes to the broader field of dendrogeomorphology.
Heavy metals (HMs) contamination poses a significant threat to environmental matrices, particularly soil, which is essential for food security, agricultural productivity, and key ecosystem services. Understanding how crops respond to HMs is crucial for developing biomonitoring strategies to assess soil contamination and inform remediation efforts. Plants, including crops, exhibit a range of functional traits (FT) that can indicate HMs stress and contamination levels. In this study, we investigated the response strategies of Zea mays L. var. Limagrain 31455, widely cultivated throughout the region of Land of Fires, a critically polluted area of southern Italy, to different concentrations of Zn, Pb, and Cr, corresponding to moderate to severe soil contamination. Functional traits related to the photosynthetic machinery, including gas exchange, chlorophyll fluorescence and reflectance indices, were examined. Root morpho-histochemical analysis were also conducted to correlate early root alterations with any observed changes in these photosynthetic traits. Results revealed distinct response patterns: tolerance to Zn, without adverse effects on photosynthetic traits; resistance to Pb, mediated by increased RD and photoprotection through change in reflectance indices; and sensitivity to Cr highlighted by severe functional impairments of all the studied photosynthetic traits and structural root damages. Functional traits, such as chlorophyll fluorescence parameters and the photochemical reflectance index or normalized difference vegetation index, demonstrated high potential for monitoring HMs stress responses; in addition, morpho-anatomical traits of the root system provided insights into biomass allocation and the capacity of var. Limagrain 31455 to tolerate and adapt to HMs stress. These findings underscore the importance of integrating physiological, anatomical, and spectral analyses to improve the biomonitoring and management of polluted soils and detecting spatial variability in contamination via remote sensing.
The variability in particle morphology significantly impacts the mechanical properties of rockfill materials. To enhance the understanding of this influence, this study collected basalt rockfill particles from 6 different site sources, with their morphology captured by 3D scanning technology, and then the morphological characteristics categorized through cluster analysis. True triaxial tests for these 6 particle groups were simulated using discrete element method (DEM), and the effects of elongation, flatness, convexity, and intermediate principal stress coefficient on the stress-strain relationship and peak strength were qualitatively assessed through principal component analysis (PCA). Further, by controlling the elongation, flatness, and convexity, 3D reconstructed particle models were created by spherical harmonics (SH) analysis, and the true triaxial tests on these models were simulated to quantitatively clarify the influence of morphological parameters on the macroscopic stress- strain relationship, peak strength, microscopic contact, anisotropic evolution, and other characteristics. Considering the size effect in rockfill materials, multi-scale models incorporating particle morphology were further evaluated across four sample scales. The results indicate that, on the macro scale, the three morphological parameters and the middle principal stress coefficient each have substantial effects on peak strength independently, while the interaction among these parameters does not have a notable influence on the strength. With increasing convexity, the peak strength of samples gradually decreases, while an increase in elongation and flatness leads to a trend of initially increasing and then decreasing strength. On the micro scale, the increase in both elongation and flatness results in a more uniform fabric in the main and lateral directions, while the coordination number shows a trend of initially increasing and then decreasing before stabilizing gradually. The influence of elongation on the main direction fabric is slightly smaller than that of flatness, while convexity has minimal effect on these microscopic features. Additionally, the morphological parameters not only impact the deformation capacity of samples but also demonstrate heightened sensitivity to the strength-size relationship of the sample due to interlocking and boundary constraints between particles. This underscores the pivotal role of morphological parameters in governing the mechanical motion of particles during the sample size scaling process, consequently influencing the strength of the material.
Root mechanical traits, including load for failure in tension (Fr), tensile strength (Tr), tensile strain (epsilon r), modulus of elasticity (Er), and tensile toughness (Wr), are critical for plant anchorage and soil stability. These traits are shaped by root morphology, type (absorptive and transport roots), and mycorrhizal associations (arbuscular mycorrhizal and ectomycorrhizal fungi). This study investigates the relationships among these traits. We examined mechanical traits across eight woody species with different mycorrhizal associations, categorizing roots into absorptive and transport types. Root morphological traits - root diameter (RD), specific root length (SRL), root tissue density (RTD), and root biomass (RB) - were measured. Tensile tests were conducted to assess mechanical properties. Statistical analyses, including regression and principal component analysis (PCA), were used to elucidate trait relationships. Transport roots exhibited superior mechanical properties compared to absorptive roots, with RD and RB showing significant positive correlations with mechanical traits. AM roots demonstrated higher tensile strength, strain, and toughness than EM roots. PCA highlighted RD and SRL as dominant factors influencing root mechanical performance, while RB contributed significantly to transport roots' structural stability. This study underscores the critical role of root morphological traits and mycorrhizal associations in determining mechanical performance. These findings highlight the ecological trade-offs between mechanical stability and resource acquisition, offering novel insights into root functional strategies and their implications for ecosystem stability.
This study aimed to investigate the relationships between the mechanical properties of plant roots and the soil reinforcement characteristics of the dominant species in the dominant riparian plants under various flooding durations. The objective was to comprehensively evaluate the optimal flooding duration for each plant under various flooding durations. This research was conducted to provide a scientific basis for plant restoration efforts. The primary focus of the study was on common species found in the middle and lower reaches of the Yangtze River, including Carex, Cynodon, and Eleusine. These species were cultivated in a local field setting and subsequently subjected to flooding tests of varying durations. The diameter of the root system gradually increases with prolonged flooding duration, while other root morphologies exhibit a trend of initially increasing and then decreasing. The flooding environment significantly influences the relationship between root diameter and the mechanical properties of the roots. This condition adversely affects Carex, whereas it has a beneficial impact on Cynodon and Eleusine. During the early stages of flooding, the shear strength of the plant root-soil complex increases; Carex is optimally applied in the restoration and protection of areas subjected to three to four months of flooding, with its ornamental value being particularly pronounced. Cynodon performs best in areas with up to six months of flooding, Eleusine is especially effective in regions with less than two months of flooding.
Loess landforms in the Loess Plateau are typical landforms in arid and semiarid areas and have a significant impact on the environment and soil erosion. Quantitative analyses on loess landform have been employed from various perspectives. Peak intervisibility can provide the potential topographic information implied in the visual connectivity of peaks, however, its application in loess landform analysis remains unexplored. In this study, the interwoven sightlines among peaks, representing peak intervisibility, were extracted from the digital elevation model and simulated into a peak intervisibility network (PIN). Nine indices were proposed to quantify the PIN. Through a case study in Northern Shaanxi, China, three tasks were conducted, including, landform interpretation, spatial pattern mining, and landform classification. The main findings are as follows: (1) PIN responds to terrain morphology and is beneficial for loess landform interpretation. (2) The spatial patterns of PIN indices are heterogeneous and strongly coupled with the terrain morphologies, showing anisotropy and autocorrelation in spatial variations. (3) Using the light gradient boost machine classifier, the PIN index-based classification reaches a mean accuracy of 86.09%, an overall accuracy of 86% and a kappa coefficient of 0.84. These findings shed light on the applicability of PIN in loess landform analysis. Peak intervisibility not only enriches the theories and methodologies of relation-based digital terrain analysis, but also enhances our comprehension of loess landform genesis, morphology, distribution, and evolution.
Asphalt pavements are subjected to both repeated vehicle loads and erosive deterioration from complicated environments in service. Salt erosion exerts a serious negative impact on the service performance of asphalt pavements in salt-rich areas such as seasonal frozen areas with snow melting and deicing, coastal areas, and saline soils areas. In recent years, the performance evolution of asphalt materials under salt erosion environments has been widely investigated. However, there is a lack of a systematic summary of salt erosion damage for asphalt materials from a multi-scale perspective. The objective in this paper is to review the performance evolution and the damage mechanism of asphalt mixtures and binders under salt erosion environments from a multi-scale perspective. The salt erosion damage and damage mechanism of asphalt mixtures is discussed. The influence of salt categories and erosion modes on the asphalt binder is classified. The salt erosion resistance of different asphalt binders is determined. In addition, the application of microscopic test methods to investigate the salt damage mechanism of asphalt binders is generalized. This review finds that the pavement performance of asphalt mixtures decreased significantly after salt erosion. A good explanation for the salt erosion mechanism of asphalt mixtures can be provided from the perspective of pores, interface adhesion, and asphalt mortar. Salt categories and erosion modes exerted great influences on the rheological performance of asphalt binders. The performance of different asphalt binders showed a remarkable diversity under salt erosion environments. In addition, the evolution of the chemical composition and microscopic morphology of asphalt binders under salt erosion environments can be well characterized by Fourier Infrared Spectroscopy (FTIR), Gel Permeation Chromatography (GPC), and microscopic tests. Finally, the major focus of future research and the challenges that may be encountered are discussed. From this literature review, pore expansion mechanisms differ fundamentally between conventional and salt storage asphalt mixtures. Sulfate ions exhibit stronger erosive effects than chlorides due to their chemical reactivity with asphalt components. Molecular-scale analyses confirm that salt solutions accelerate asphalt aging through light-component depletion and heavy-component accumulation. These collective findings from prior studies establish critical theoretical foundations for designing durable pavements in saline environments.
Subarctic palsa mires are natural indicators of the status of permafrost in its sporadic distribution zone. Estimation of the rate of their thawing can become an auxiliary indicator to predict climate shifts. The formation, growth, and degradation of palsas are dynamic processes that depend on seasonal weather fluctuations and local environmental factors. Therefore, accurate forecasts of palsas conditions and related ecosystem shifts must be based on a broad set of attributes of palsas from different regions of the Northern Hemisphere. With this in mind, we studied two palsa mires sites on the Kola Peninsula, for which no thorough descriptions were previously available. The first site, Chavanga, is at the southern limit of the permafrost zone under unfavorable climatic conditions and is a collapsing relic. The second site, Ponoy, in contrast, is within the sporadic permafrost zone with relatively cold and dry conditions. Our dataset was created by combining several methods to produce detailed spatial models of permafrost for the studied palsa mires. We used 3D ground-penetrating radar (GPR) survey, UAV-based orthophoto maps, peat thermometry, time-domain reflectometry, and manual sampling. We developed two integrated geospatial models that describe the active layer, the configuration of the palsa frozen core, and its thermal state and identify the zones of the most intense thawing. These observations revealed a significant thermal effect of the groundwater flow and its critical role in the palsas segmentation and rapid collapse. We have investigated a regulating effect of micromorphological features of palsa mounds such as heights, slope, depressions, and mire mineral bed through groundwater drainage. As a result, two new scenarios for the palsa degradation process have been developed, emphasizing the influence of environmental factors on the permafrost condition.
Soil-borne pathogens can severely reduce vegetable crop output and quality. A disease complex may develop when many soil-borne pathogens attack a crop simultaneously, which can cause more damage. The soil-borne fungus Fusarium oxysporum (Fo) and the nematode Meloidogyne incognita (Mi) significantly reduce global tomato (Solanum lycopersicum L.) yields. After a soil-borne pathogenic infection, plants undergo numerous changes. Therefore, we conducted the present study to examine the impact of soil-borne pathogens Fo and Mi on the growth, physiology, biochemical, and root morphology of tomato cultivars Zhongza 09 (ZZ09) and Gailiang Maofen 802 (GLMFA and GLMFB) at 10, 20, and 30 days after-inoculation (DAI). The present study revealed that combined infections adversely damaged plant growth, photosynthetic pigmentation, gas exchange, biochemistry, and root morphology. The plant growth reduction in GLMFA and GLMFB was greater than in ZZ09. The chlorophyll content and photosynthetic indices declined dramatically; however, ZZ09 declined less than GLMFA and GLMFB plants. In GLMFA and GLMFB plants, the combined infection of Fo and Mi lowered plant-defense-related antioxidant activity compared to their single infection or control. ZZ09's antioxidants were greatly up-regulated, indicating pathogen tolerance. ZZ09 had significantly lower gall and wilt disease indices than GLMFA and GLMFB. Moreover, the microscopic examination of roots showed that Fo and Mi infection damaged GLMFA and GLMFB more than ZZ09 plants. Thus, combined infection induced severe root damage, reduced plant growth, reduced antioxidants, and increased reactive oxygen species (ROS) production compared to single inoculation. However, the ZZ09 cultivar exhibited significantly stronger tolerance to combined infection.