共检索到 1

Calcareous sands provide the foundational support for various marine infrastructures. In the harsh marine environment, earthquake or wave loads apply multidirectional cyclic shear stresses to the foundation soil. To explore the undrained multidirectional cyclic response of sand, a series of simple shear tests were performed on reconstituted sand specimens considering the effect of phase difference (theta). By comparing the results with those of siliceous sand under similar conditions, the behavior of calcareous sand under multidirectional cyclic loading became clear. The results demonstrated that calcareous sand shows a lower degree of cyclic instability compared to siliceous sand, corresponding to the weaker strain-softening observed in calcareous sand during monotonic shear tests. The trend in normalized pore water pressure evolution in siliceous sand exceeds that in calcareous sand. Furthermore, under multidirectional cyclic shear conditions, the liquefaction resistance decreases by 30 % in extreme cases, irrespective of sand type. The liquefaction resistance of calcareous sand surpasses that of siliceous sand. However, as the cyclic stress ratio decreases, the reverse trend is observed, regardless of the impact of theta. Subsequently, the possible causes of the above experimental phenomena are explored from the perspectives of shear modulus and energy dissipation.

期刊论文 2025-07-01 DOI: 10.1016/j.soildyn.2025.109346 ISSN: 0267-7261
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-1条  共1条,1页