Agriculture, including horticulture, can support and provide food for the global population, meeting both nutritional and economic needs. However, plant diseases induced by phytopathogens result in enormous losses in horticultural crop production through decreasing yields and the quality of crops. Notably, fungal phytopathogens are responsible for over 40% of these diseases. Among them, Fusarium represents a significant group of pathogenic fungi that inflict damage and reduce crop yields, thereby contributing to declines in food supplies. Conventional approaches to addressing these issues involve methods such as intercropping, crop rotation, soil solarization, and the use of synthetic fungicides. However, these methods may cause environmental problems, increase disease resistance, and result in the emergence of new pathogens with elevated resistance levels. Furthermore, the use of gene editing technology to prevent Fusarium diseases faces regulatory approval challenges and health risks. Biological control is recognized as an efficient strategy for managing a wide array of plant diseases by employing bacteria and fungi as agents to combat phytopathogens. Trichoderma is a widely recognized fungal genus employed as a biological control agent, with the potential to be a commercial biological control agent to suppress the growth of Fusarium. This article explores Trichoderma's role in managing Fusarium-related diseases in horticultural crops, highlighting its potential as a biocontrol agent and the challenges in scaling up its utilization.
A range of fungal species showed variable abilities to colonize and penetrate a mortar substrate. Calcium biomineralization was a common feature with calcium-containing crystals deposited in the microenvironment or encrusting hyphae, regardless of the specific mortar composition. Several species caused significant damage to the mortar surface, exhibiting burrowing and penetration, surface etching, and biomineralization. In some cases, extensive biomineralization of hyphae, probably by carbonatization, resulted in the formation of crystalline tubes after hyphal degradation on mortar blocks, including those amended with Co or Sr carbonate. Ca was the only metal detected in the biomineralized formations with Co or Sr undetectable. Aspergillus niger, Stemphylium sp. and Paecilomyces sp. could penetrate mortar with differential responses depending on the porosity. Fluorescent staining of thin sections recorded penetration depths of similar to 530 um for A. niger and similar to 620 um for Stemphylium sp. Penetration depth varied inversely with porosity and greater penetration depths were achieved in mortar with a lower porosity (lower water/cement ratio). These results have provided further understanding of biodeteriorative fungal interactions with cementitious substrates that can clearly affect structural integrity. The potential significance of fungal colonization and such biodeteriorative phenomena should not be overlooked in built environment contexts, including radionuclide storage and surface decontamination.