Citrus is the world's largest fruit category, yet it is frequently damaged by weeds during cultivation and management. As a green cultivation measure, covering crops in orchards effectively controls weeds and enhances soil quality. At present, the research on covering crops is mostly focused on soil, but there is still a lack of research on how crops affect citrus trees. This study aims to provide theoretical support for the widespread adoption of the green management practices. The previous research of us found that rattail fescue and vicia villosa had notably enhanced the organic matter and alkali-hydrolyzable nitrogen levels in orchard soils. Consequently, this study treated citrus orchards with sowing rattail fescue and vicia villosa between rows, with manual tillage serving as the control, to investigate the impact of two-year grass cultivation on N metabolism in citrus roots. Results indicated that both types of grass significantly enhanced amino acid metabolism in citrus roots at depths of 0-20 cm, significantly increasing activities of nitrate reductase, nitrite reductase, glutamine synthetase, NADH-glutamate synthetase, and NADPH-glutamate dehydrogenase, as well as expression levels of NR and NiR. Rattail fescue demonstrated superior effects. There was no discernible pattern in amino acid levels at depths of 20-40 cm, with both grass types significantly increasing NR, NADH-GOGAT enzyme activity, and also increasing gene expression levels for NiR, GDH1, and GDH2. Both types of grass significantly promoted N metabolism in citrus roots at depths of 0-20 cm, with rattail fescue outperforming vicia villosa.
Bread wheat (Triticum aestivum L.) is a major food grain crop predominantly grown in semi-arid regions. Nevertheless, its productivity is greatly affected by drought, posing a significant challenge to sustainable cultivation. This study aimed to assess the effectiveness of gamma-aminobutyric acid (GABA) seed priming, followed by storage at various temperatures, in enhancing drought tolerance in bread wheat. Seeds of bread wheat were primed with GABA (1 mu M) for 18 h at a 1:5 seed-to-solution ratio and subsequently stored at 15, 25, and 35 degrees C for six weeks. Post-treatment, the seeds were sown in soil maintained at either 75% (well-watered) or 40% (drought stress) water holding capacity. Drought stress delayed germination and impeded plant growth. However, GABA priming improved seedling growth, dry biomass, water content, and photosystem efficiency, while mitigating oxidative damage under drought conditions. Additionally, drought stress induced higher activities of antioxidant enzymes and leaf free proline and glycinebetaine contents, leaf soluble phenolics, and leaf GABA contents, all of which were further enhanced by GABA priming. Storage of primed seeds at 25 degrees C yielded the most beneficial results, followed by 15 degrees C. Overall, GABA seed priming, particularly when stored at 25 degrees C, significantly bolstered the antioxidant defense mechanisms and leaf proline and glycinebetaine, leaf soluble phenolics and leaf GABA accumulation, thereby sustaining photosystem efficiency and growth in wheat under drought stress.
The purpose of this study was to explore the carbon and nitrogen metabolism mechanisms of sand-cultivated cucumbers under different deficit irrigation-nitrogen management strategies and provide a theoretical basis for their greenhouse management. This study set up two factors, the deficit irrigation level and the nitrogen application rate, and conducted an experiment on deficit irrigation-nitrogen coupling of sand-cultivated cucumbers using a quadratic saturation D-optimal design. Seven treatments were set up in the experiment, to measure the soluble sugar and protein contents, as well as the activity of key enzymes for carbon and nitrogen metabolism at five different growth stages. The results indicate that the 80% irrigation with 623 kg N hm-2 (IN4) treatment significantly improved the soluble sugar, protein, and actual leaf nitrogen contents of cucumber at the five different growth stages and, as a result, achieved higher sucrose synthase (SS) and sucrose phosphate synthase (SPS) activities in the cucumber leaves. Furthermore, such improvements were due to the reduction in oxidative damage of sand-cultivated cucumber at various growth stages. The IN4 and 89% irrigation with 1250 kg N hm-2 (IN5) treatments significantly increased the activities of RuBisCO, catalase (CAT), peroxidise (POD), and superoxide dismutase (SOD) at various growth stages of sand-cultivated cucumber. The higher activities of glutamate dehydrogenase (GLDH), glutamate synthase (GOGAT), nitrate reductase (NR), glutamine synthase (GS), acid invertase enzyme (AIE), neutral invertase enzyme (NIE), and better antioxidative enzyme activities were recorded under the IN4 treatments at various growth stages, which effectively improve (69.6%) cucumber yield. The soil properties, carbon and nitrogen metabolism, and antioxidant metabolism were positively correlated with sand-cultivated cucumber yield in a greenhouse. We concluded that the IN4 treatment was the better deficit irrigation-nitrogen management strategy because it considerably improves carbon and nitrogen metabolism, antioxidant enzyme activities, and sand-cultivated cucumber yield in a greenhouse.
The central carbon (C) metabolic network is responsible for most of the production of energy and biosynthesis in microorganisms and is therefore key to a mechanistic understanding of microbial life in soil communities. Many upland soil communities have shown a relatively high C flux through the pentose phosphate (PP) or the Entner-Doudoroff (ED) pathway, thought to be related to oxidative damage control. We tested the hypothesis that the metabolic organization of the central C metabolic network differed between two ecosystems, an anoxic marsh soil and oxic upland soil, and would be affected by altering oxygen concentrations. We expected there to be high PP/ED pathway activity under high oxygen concentrations and in oxic soils and low PP/ED activity in reduced oxygen concentrations and in marsh soil. Although we found high PP/ED activity in the upland soil and low activity in the marsh soil, lowering the oxygen concentration for the upland soil did not reduce the relative PP/ED pathway activity as hypothesized, nor did increasing the oxygen concentration in the marsh soil increase the PP/ED pathway activity. We speculate that the high PP/ED activity in the upland soil, even when exposed to low oxygen concentrations, was related to a high demand for NADPH for biosynthesis, thus reflecting higher microbial growth rates in C-rich soils than in C-poor sediments. Further studies are needed to explain the observed metabolic diversity among soil ecosystems and determine whether it is related to microbial growth rates. IMPORTANCE We observed that the organization of the central carbon (C) metabolic processes differed between oxic and anoxic soil. However, we also found that the pentose phosphate pathway/Entner-Doudoroff (PP/ED) pathway activity remained high after reducing the oxygen concentration for the upland soil and did not increase in response to an increase in oxygen concentration in the marsh soil. These observations contradicted the hypothesis that oxidative stress is a main driver for high PP/ED activity in soil communities. We suggest that the high PP/ED activity and NADPH production reflect higher anabolic activities and growth rates in the upland soil compared to the anaerobic marsh soil. A greater understanding of the molecular and biochemical processes in soil communities is needed to develop a mechanistic perspective on microbial activities and their relationship to soil C and nutrient cycling. Such an increased mechanistic perspective is ecologically relevant, given that the central carbon metabolic network is intimately tied to the energy metabolism of microbes, the efficiency of new microbial biomass production, and soil organic matter formation. We observed that the organization of the central carbon (C) metabolic processes differed between oxic and anoxic soil. However, we also found that the pentose phosphate pathway/Entner-Doudoroff (PP/ED) pathway activity remained high after reducing the oxygen concentration for the upland soil and did not increase in response to an increase in oxygen concentration in the marsh soil. These observations contradicted the hypothesis that oxidative stress is a main driver for high PP/ED activity in soil communities. We suggest that the high PP/ED activity and NADPH production reflect higher anabolic activities and growth rates in the upland soil compared to the anaerobic marsh soil. A greater understanding of the molecular and biochemical processes in soil communities is needed to develop a mechanistic perspective on microbial activities and their relationship to soil C and nutrient cycling. Such an increased mechanistic perspective is ecologically relevant, given that the central carbon metabolic network is intimately tied to the energy metabolism of microbes, the efficiency of new microbial biomass production, and soil organic matter formation.
Many contaminated soils contain several toxic elements (TEs) in elevated contents, and plant-TE interactions can differ from single TE contamination. Therefore, this study investigated the impact of combined contamination (As, Cd, Pb, Zn) on the physiological and metabolic processes of lettuce. After 45 days of exposure, TE excess in soil resulted in the inhibition of root and leaf biomass by 40 and 48%, respectively. Oxidative stress by TE accumulation was indicated by markers-malondialdehyde and 5-methylcytosine-and visible symptoms of toxicity (leaf chlorosis, root browning) and morpho-anatomical changes, which were related to the change in water regime (water potential decrease). An analysis of free amino acids (AAs) indicated that TEs disturbed N and C metabolism, especially in leaves, increasing the total content of free AAs and their families. Stress-induced senescence by TEs suggested changes in gas exchange parameters (increase in transpiration rate, stomatal conductance, and intercellular CO2 concentration), photosynthetic pigments (decrease in chlorophylls and carotenoids), a decrease in water use efficiency, and the maximum quantum yield of photosystem II. These results confirmed that the toxicity of combined contamination significantly affected the processes of lettuce by damaging the antioxidant system and expressing higher leaf sensitivity to TE multicontamination.
Grafting in tomato ( Solanum lycopersicum L.) has mainly been used to prevent damage by soil-borne pathogens and the negative effects of abiotic stresses, although productivity and fruit quality can also be enhanced using high vigor rootstocks. In the context of a low nutrients input agriculture, the grafting of elite cultivars onto rootstocks displaying higher Nitrogen Use Efficiency (NUE) supports a direct strategy for yield maximization. In this study we assessed the use of plants overexpressing the Arabidopsis ( AtCDF3 ) or tomato ( SlCDF3 ) CDF3 genes, previously reported to increase NUE in tomato, as rootstocks to improve yield in the grafted scion under low N inputs. We found that the AtCDF3 gene induced greater production of sugars and amino acids, which allowed for greater biomass and fruit yield under both sufficient and limiting N supplies. Conversely, no positive impact was found with the SlCDF3 gene. Hormone analyses suggest that gibberellins (GA 4 ), auxin and cytokinins (tZ) might be involved in the AtCDF3 responses to N. The differential responses triggered by the two genes could be related, at least in part, to the mobility of the AtCDF3 transcript through the phloem to the shoot. Consistently, a higher expression of the target genes of the transcription factor, such as glutamine synthase 2 ( SlGS2 ) and GA oxidase 3 ( SlGA3ox ), involved in amino acid and gibberellin biosynthesis, respectively, was observed in the leaves of this graft combination. Altogether, our results provided further insights into the mode of action of CDF3 genes and their biotechnology potential for transgrafting approaches.
A large number of dead seedlings can occur in saline soils, which seriously affects the large-scale cultivation of rice. This study investigated the effects of plant growth regulators (PGRs) and nitrogen application on seedling growth and salt tolerance (Oryza sativa L.), which is of great significance for agricultural production practices. A conventional rice variety, Huang Huazhan, was selected for this study. Non-salt stress treatments included 0% NaCl (CK treatment), CK + 0.05 g N/pot (N treatment), CK + 40 mg center dot L-1 5-aminolevulinic acid (5-ALA) (A treatment), and CK + 30 mg center dot L-1 diethylaminoethyl acetate (DTA-6) (D treatment). Salt stress treatments included 0.3% NaCl (S treatment), N + 0.3% NaCl (NS treatment), A + 0.3% NaCl (AS treatment), and D + 0.3% NaCl (DS treatment). When 3 leaves and 1 heart emerged from the soil, plants were sprayed with DTA-6 and 5-ALA, followed by the application of 0.3% NaCl (w/w) to the soil after 24 h. Seedling morphology and photosynthetic indices, as well as carbohydrate metabolism and key enzyme activities, were determined for each treatment. Our results showed that N, A, and D treatments promoted seedling growth, photosynthesis, carbohydrate levels, and the activities of key enzymes involved in carbon metabolism when compared to the CK treatment. The A treatment had the most significant effect, with increases in aboveground dry weight and net photosynthetic rates (Pn) ranging from 17.74% to 41.02% and 3.61% to 32.60%, respectively. Stomatal limiting values (Ls) significantly decreased from 19.17% to 43.02%. Salt stress significantly inhibited seedling growth. NS, AS, and DS treatments alleviated the morphological and physiological damage of salt stress on seedlings when compared to the S treatment. The AS treatment was the most effective in improving seedling morphology, promoting photosynthesis, increasing carbohydrate levels, and key enzyme activities. After AS treatment, increases in aboveground dry weight, net photosynthetic rate, soluble sugar content, total sucrose synthase, and amylase activities were 17.50% to 50.79%, 11.39% to 98.10%, 20.20% to 80.85%, 21.21% to 33.53%, and 22.17% to 34.19%, respectively, when compared to the S treatment. In summary, foliar sprays of 5-ALA, DTA-6, and additional nitrogen fertilizer enhanced rice seedling growth, increased photosynthesis, lowered Ls values, and improved seedling salt tolerance. Spraying two regulators, 5-ALA and DTA-6, quantitatively increased the effect of nitrogen fertilizer, with comparable effects on NaCl stress regulation. This study provides the basis for efficient agricultural production.
Water stress (WS) poses a significant threat to global food and energy security by adversely affecting soybean growth and nitrogen metabolism. This study explores the synergistic effects of exogenous salicylic acid (SA, 0.5 mM) and thiourea (TU, 400 mg L-1), potent plant growth regulators, on soybean responses under WS conditions. The treatments involved foliar spraying for 3 days before inducing WS by reducing soil moisture to 50% of field capacity, followed by 2 weeks of cultivation under normal or WS conditions. WS significantly reduced plant biomass, chlorophyll content, photosynthetic efficiency, water status, protein content, and total nitrogen content in roots and leaves. Concurrently, it elevated levels of leaf malondialdehyde, H2O2, proline, nitrate, and ammonium. WS also triggered an increase in antioxidant enzyme activity and osmolyte accumulation in soybean plants. Application of SA and TU enhanced the activities of key enzymes crucial for nitrogen assimilation and amino acid synthesis. Moreover, SA and TU improved plant growth, water status, chlorophyll content, photosynthetic efficiency, protein content, and total nitrogen content, while reducing oxidative stress and leaf proline levels. Indeed, the simultaneous application of SA and TU demonstrated a heightened impact compared to their separate use, suggesting a synergistic interaction. This study underscores the potential of SA and TU to enhance WS tolerance in soybean plants by modulating nitrogen metabolism and mitigating oxidative damage. These findings hold significant promise for improving crop productivity and quality in the face of escalating water limitations due to climate change.
Carbon storage in mangroves is considered a natural solution to mitigate climate change as an essential coastal blue carbon ecosystem service for climate change. The magnitude of carbon storage in soils depends on the carbon metabolic activities of the microbial community, and these dynamics are subject to the influence of climate conditions, including seasonal changes. Despite mangroves being one of the world's highest in soil carbon density and carbon sequestration rates, our understanding of this aspect remains limited. Here, we investigated the seasonal changes in the carbon metabolic profile of microbial communities in mangrove soils along the seashore of the whole Hainan Island (with the highest diversity of mangrove species in China). There was a clear season dependence in the metabolic activity and functional diversity of mangrove soil microbial community on Hainan Island, showing the trend of the rainy season > the dry season. The carbon metabolic activity in the rainy season is three times higher than in the dry season. The season plays a critical role in shaping the carbon functional diversity of microbial communities, which that by changing biotic interactions and soil properties, particularly soil TN, NO2 -N, plant richness and mean DBH. This study provides important insights into comprehend the carbon metabolic functional diversity of microbial communities in mangrove soils and provides basic data support for predicting the blue carbon feedback of mangrove ecosystems to global climate change.
Water stress can trigger acclimation responses and damage plants. The aim of this study was to evaluate the integrative responses of cotton hydraulic conductance, leaf photosynthesis, and carbon metabolism to short-term drought and subsequent rewatering. A water-controlled pot experiment was conducted in 2020, with soil water drying continuing for one day (D1), two days (D2), and three days (D3) after it reached 40% +/- 5% of the soil water holding capacity at the blooming stage of cotton, and the soil was then rewatered to the soil water holding capacity. We investigated how the stem hydraulic conductance, gas exchange, and biochemical traits of cotton were affected by imposed drought stress and subsequent rewatering. The hydraulic characteristics of cotton in the D2 and D3 treatments evolved with damage, complete closure of stomatal conductance, and complete deterioration of photosynthesis, in addition to severe floating changes in the carbon metabolism affected by drought. The leaves' functional characteristics after rewatering cannot be completely recovered to full-irrigation levels, and the recovery extent was strongly linked to the duration. Consequently, it is considered desirable to maintain normal physiological activity during the cotton reproductive period, and the drought episode can be sustained for 1 day in a long-term perspective when the soil water content is depleted to 40% +/- 5% of the soil water holding capacity. These results can provide in-depth ideas for better understanding the hydraulic and physiological responses of cotton to drought episodes and rewatering, and they can help drought-affected cotton to cope with future climate change.