Despite the fact that winter lasts for a third of the year in the temperate grasslands, winter processes in these ecosystems have been inadequately represented in global climate change studies. While climate change increases the snow depth in the Mongolian Plateau, grasslands in this region are also simultaneously facing high pressure from land use changes, such as grazing, mowing, and agricultural cultivation. To elucidate how these changes affect the grasslands' winter nitrogen (N) budget, we manipulated snow depth under different land use practices and conducted a(15)NH(4)(15)NO(3)-labeling experiment. The change in(15)N recovery during winter time was assessed by measuring the(15)N/N-14 ratio of root, litter, and soils (0-5 cm and 5-20 cm). Soil microbial biomass carbon and N as well as N2O emission were also measured. Compared with ambient snow, the deepened snow treatment reduced total(15)N recovery on average by 21.7% and 19.2% during the first and second winter, respectively. The decrease in(15)N recovery was primarily attributed to deepened snow increasing the soil temperature and thus microbial biomass. The higher microbial activity under deepened snow then subsequently resulted in higher gaseous N loss. The N2O emission under deepened snow (0.144 kg N ha(-1)) was 6.26 times than that of under ambient snow (0.023 kg N ha(-1)) during the period of snow cover and spring thaw. Although deepened snow reduced soil(15)N recovery, the surface soil N concentration remained unchanged after five years' deepened snow treatment because deepened snow reduced soil N loss via wind erosion by 86%.
Warming in the Arctic accelerates top-soil decomposition and deep-soil permafrost thaw. This may lead to an increase in plant-available nutrients throughout the active layer soil and near the permafrost thaw front. For nitrogen (N) limited high arctic plants, increased N availability may enhance growth and alter community composition, importantly affecting the ecosystem carbon balance. However, the extent to which plants can take advantage of this newly available N may be constrained by the following three factors: vertical distribution of N within the soil profile, timing of N-release, and competition with other plants and microorganisms. Therefore, we investigated species- and depth-specific plant N uptake in a high arctic tundra, northeastern Greenland. Using stable isotopic labelling (N-15-NH4+), we simulated autumn N-release at three depths within the active layer: top (10 cm), mid (45 cm) and deep-soil near the permafrost thaw front (90 cm). We measured plant species-specific N uptake immediately after N-release (autumn) and after 1 year, and assessed depth-specific microbial N uptake and resource partitioning between above- and below-ground plant parts, microorganisms and soil. We found that high arctic plants actively foraged for N past the peak growing season, notably the graminoidKobresia myosuroides. While most plant species (Carex rupestris,Dryas octopetala,K. myosuroides) preferred top-soil N, the shrubSalix arcticaalso effectively acquired N from deeper soil layers. All plants were able to obtain N from the permafrost thaw front, both in autumn and during the following growing season, demonstrating the importance of permafrost-released N as a new N source for arctic plants. Finally, microbial N uptake markedly declined with depth, hence, plant access to deep-soil N pools is a competitive strength. In conclusion, plant species-specific competitive advantages with respect to both time- and depth-specific N-release may dictate short- and long-term plant community changes in the Arctic and consequently, larger-scale climate feedbacks.
Perennially frozen soil in high latitude ecosystems (permafrost) currently stores 1330-1580 Pg of carbon (C). As these ecosystems warm, the thaw and decomposition of permafrost is expected to release large amounts of C to the atmosphere. Fortunately, losses from the permafrost C pool will be partially offset by increased plant productivity. The degree to which plants are able to sequester C, however, will be determined by changing nitrogen (N) availability in these thawing soil profiles. N availability currently limits plant productivity in tundra ecosystems but plant access to N is expected improve as decomposition increases in speed and extends to deeper soil horizons. To evaluate the relationship between permafrost thaw and N availability, we monitored N cycling during 5years of experimentally induced permafrost thaw at the Carbon in Permafrost Experimental Heating Research (CiPEHR) project. Inorganic N availability increased significantly in response to deeper thaw and greater soil moisture induced by Soil warming. This treatment also prompted a 23% increase in aboveground biomass and a 49% increase in foliar N pools. The sedge Eriophorum vaginatum responded most strongly to warming: this species explained 91% of the change in aboveground biomass during the 5year period. Air warming had little impact when applied alone, but when applied in combination with Soil warming, growing season soil inorganic N availability was significantly reduced. These results demonstrate that there is a strong positive relationship between the depth of permafrost thaw and N availability in tundra ecosystems but that this relationship can be diminished by interactions between increased thaw, warmer air temperatures, and higher levels of soil moisture. Within 5years of permafrost thaw, plants actively incorporate newly available N into biomass but C storage in live vascular plant biomass is unlikely to be greater than losses from deep soil C pools.
Winter biogeochemical processes have received considerable attention. Biological processes (e.g., microbial respiration and plant photosynthesis) do not cease, even at sub-zero temperatures. However, our knowledge of plant nitrogen (N) uptake at sub-zero soil temperatures is particularly limited for deciduous plant species, which do not have leaves during winter. We investigated plant N uptake by evergreen and deciduous species and soil N processes during sub-zero soil temperatures in cool temperate forest soil. Isotopically labelled nitrate (NO3-N-15) was injected into soil as a tracer of plant uptake and soil N dynamics at sub-zero temperature soil at a cool temperate field site. Over a period of 41 days, 6-48 mg/kg DW-1 of N-15 accumulated in evergreen species and deciduous tree species. Furthermore, the N-15 content in ammonium increased, suggesting ammonium production at sub-zero soil temperatures. The increase in (NH4)-N-15 was positively correlated with soil moisture, indicating an important role for soil water in N dynamics at sub-zero soil temperatures. Our findings demonstrate that N uptake by plants and soil N transformation did not cease at sub-zero soil temperatures. Further studies are needed to understand the importance of N dynamics at sub-zero soil temperatures.