共检索到 51

Bare land exposed by glacier retreat provides new opportunities for ecosystem development. Investigating primary vegetation succession in deglaciated regions can provide significant insights for ecological restoration, particularly for future climate change scenarios. Nonetheless, research on this topic in the Qinghai-Tibet Plateau has been exceedingly limited. This study aimed to investigate vegetation succession in the deglaciated area of the Zepu glacier during the Little Ice Age in southeastern Tibet. Quadrat surveys were performed on arboreal communities, and trends in vegetation change were assessed utilizing multi-year (1986-2024) remote sensing data. The findings indicate that vegetation succession in the Zepu glacier deglaciated area typically adheres to a sequence of bare land-shrub-tree, divided into four stages: (1) shrub (species include Larix griffithii Mast., Hippophae rhamnoides subsp. yunnanensis Rousi, Betula utilis D. Don, and Populus pseudoglauca C. Wang & P. Y. Fu); (2) broadleaf forest primarily dominated by Hippophae rhamnoides subsp. yunnanensis Rousi; (3) mixed coniferous-broadleaf forest with Hippophae rhamnoides subsp. yunnanensis Rousi and Populus pseudoglauca C. Wang & P. Y. Fu as the dominant species; and (4) mixed coniferous-broadleaf forest dominated by Picea likiangensis (Franch.) E. Pritz. Soil depth and NDVI both increase with succession. Species diversity is significantly higher in the third stage compared to other successional stages. In addition, soil moisture content is significantly greater in the broadleaf-dominated communities than in the conifer-dominated communities. An analysis of NDVI from 1986 to 2024 reveals an overall positive trend in vegetation recovery in the area, with 93% of the area showing significant vegetation increase. Temperature is the primary controlling factor for this recovery, showing a positive correlation with vegetation cover. The results indicate that Key ecological indicators-including species composition, diversity, NDVI, soil depth, and soil moisture content-exhibit stage-specific patterns, reflecting distinct phases of primary succession. These findings enhance our comprehension of vegetation succession in deglaciated areas and their influencing factors in deglaciated areas, providing theoretical support for vegetation restoration in climate change.

期刊论文 2025-08-04 DOI: 10.3390/f16081277

Extreme weather events are increasing the frequency and intensity of forest fires, generating serious environmental and socio-economic impacts. These fires cause soil loss through erosion, organic matter depletion, increased surface runoff and the release of greenhouse gases, intensifying climate change. They also affect biodiversity, terrestrial and aquatic ecosystems, and soil quality. The assessment of forest fires by remote sensing, such as the use of the Normalised Difference Vegetation Index (NDVI), allows rapid analysis of damaged areas, monitoring of vegetation changes and the design of restoration strategies. On the other hand, models such as RUSLE are key tools for calculating soil erosion and planning conservation measures. A study of the impacts on soils and vegetation in the south of Salamanca, where one of the worst fires in the province took place in 2022, has been carried out using RUSLE and NDVI models, respectively. The study confirms that fires significantly affect soil properties, increase erosion and hinder vegetation recovery, highlighting the need for effective restoration strategies. It was observed that erosion intensifies after fires (the maximum rate of soil loss before is 1551.85 t/ha/year, while after it is 4899.42 t/ha/year) especially in areas with steeper slopes, which increases soil vulnerability, according to the RUSLE model. The NDVI showed a decrease in vegetation recovery in the most affected areas (with a maximum value of 0.3085 after the event and 0.4677 before), indicating a slow regeneration process. The generation of detailed cartographies is essential to identify critical areas and prioritise conservation actions. Furthermore, the study highlights the importance of implementing restoration measures, designing sustainable agricultural strategies and developing environmental policies focused on the mitigation of land degradation and the recovery of fire-affected ecosystems.

期刊论文 2025-04-07 DOI: 10.3390/land14040793

Soil salinization threatens global agriculture, reducing crop productivity and food security. Developing strategies to improve salt tolerance is crucial for sustainable agriculture. This study examines the role of organic fertilizer in mitigating salt stress in rice (Oryza sativa L.) by integrating NDVI and metabolomics. Using salt-sensitive (19X) and salt-tolerant (HHZ) cultivars, we aimed to (1) evaluate changes in NDVI and metabolite content under salt stress, (2) assess the regulatory effects of organic fertilizer, and (3) identify key metabolites involved in stress response and fertilizer-induced regulation. Under salt stress, survival rate of the 19X plants dropped to 6%, while HHZ maintained 38%, with organic fertilizer increasing survival rate to 25% in 19X and 66% in HHZ. NDVI values declined sharply in 19X (from 0.56 to <0.25) but remained stable in HHZ (similar to 0.56), showing a strong correlation with survival rate (R-2 = 0.87, p < 0.01). NDVI provided a dynamic, non-destructive assessment of rice health, offering a faster and more precise evaluation of salt tolerance than survival rate analysis. Metabolomic analysis identified 12 key salt-tolerant metabolites, including citric acid, which is well recognized for regulating salt tolerance. HTPA, pipecolic acid, maleamic acid, and myristoleic acid have previously been reported but require further study. Additionally, seven novel salt-tolerant metabolites-tridecylic acid, propentofylline, octadeca penten-3-one, 14,16-dihydroxy-benzoxacyclotetradecine-dione, cyclopentadecanolide, HpODE, and (+/-)8,9-DiHETE-were discovered, warranting further investigation. Organic fertilizer alleviated salt stress through distinct metabolic mechanisms in each cultivar. In 19X, it enhanced antioxidant defenses and energy metabolism, mitigating oxidative damage and improving fatty acid metabolism. In contrast, HHZ primarily benefitted from improved membrane stability and ion homeostasis, reducing lipid peroxidation and oxidative stress. These findings primarily support the identification and screening of salt-tolerant rice cultivars while also highlighting the need for cultivar-specific fertilization strategies to optimize stress resilience and crop performance. Based on the correlation analysis, 26 out of 53 differential metabolites were significantly correlated with NDVI, confirming a strong association between NDVI shifts and key metabolic changes in response to salt stress and organic fertilizer application. By integrating NDVI and metabolomics, this study provides a refined method for evaluating salt stress responses, capturing early NDVI changes and key salinity stress biomarkers. This approach may prove valuable for application in salt-tolerant variety screening, precision agriculture, and sustainable farming, contributing to scientific strategies for future crop improvement and agricultural resilience.

期刊论文 2025-03-13 DOI: 10.3390/plants14060902 ISSN: 2223-7747

The use of sensor technology is essential in managing fertilization, especially in urban landscape where excessive fertilization is a common issue that can lead to environmental damage and increased costs. This study focused on optimizing nitrogen fertilizer application for Satinleaf (Chrysophyllum oliviforme), a native Florida plant commonly used in South Florida landscaping. Fertilizer with an 8N-3P-9K formulation was applied in six different treatments: 15 g (control), 15 g (15 g twice; T1), 15 g (15 g once; T2), 30 g (15 g twice; T3), 30 g (15 g once; T4), and 45 g (15 g twice; T5). Evaluations of plant growth and nutrient status were conducted at several intervals: baseline (0), and 30, 60, 90, 120, 150, and 180 days post-fertilizer application. Three types of optical sensors-GreenSeeker (TM), SPAD meter, and atLEAF chlorophyll sensor - were used to monitor chlorophyll levels as an indicator of nitrogen content. The study found that the 30 g (15 g twice; T3) treatment was most effective in promoting plant growth and increasing nitrogen content in leaves and soil, while the 45 g (15 g twice; T5) treatment resulted in higher nutrient runoff, indicating potential environmental risks. These findings emphasize the value of using optical sensors for precise nitrogen management in plant nurseries to enhance growth, lower costs, and minimize environmental impact.

期刊论文 2025-02-06 DOI: 10.3389/fpls.2025.1522662 ISSN: 1664-462X

Major earthquakes in mountainous areas usually exert negative impacts on vegetation cover and growth due the numerous coseismic landslides. However, understanding of the duration of these impacts and spatiotemporal dynamics of vegetation recovery dominated by environmental factors remains limited. The present study aimed to investigate the spatiotemporal dynamics of natural vegetation restoration and associated mechanisms in a mountainous basin in southwestern China after the 2008 Wenchuan Ms 8.0 earthquake. The results showed that the normalized difference vegetation index (NDVI) substantially decreased from 0.70 to 0.47 after the earthquake and then gradually increased at an average rate of 0.020 yr(- 1). By 2023, vegetation had been restored to its pre-earthquake levels in 84.9% of the total area. And 15.1% of the land remains unrecovered, with 11.7% covered by landslide slump mass. Approximately 4.16% of the entire basin is projected to recover in the future (theta(slope) > 0, H > 0.5) over a seven-year period. Elevation was the most crucial factor influencing both the damage and recovery of vegetation in the basin, followed by landslide slump mass and soil type. The overall vegetation recovery potential is limited, with an average vegetation restoration potential index (VRPI) of 0.21 in 2023. Notably, 11.2% of the basin exhibited a VRPI > 0.4, mainly situated in the northernmost part, characterized by high altitude (> 3000 m), carbonate-cinnamon soil, and dense distribution of landslide slump mass. The results indicate that natural vegetation has a robust capacity for recovery, albeit hindered by active landslides and fragile high-altitude habitats, where human intervention should be implemented. The results provide valuable information to guide future vegetation restoration planning and layout in Wenchuan earthquake-stricken areas.

期刊论文 2025-02-01 DOI: 10.1007/s11069-024-06918-1 ISSN: 0921-030X

Environmental changes, such as climate warming and higher herbivory pressure, are altering the carbon balance of Arctic ecosystems; yet, how these drivers modify the carbon balance among different habitats remains uncertain. This hampers our ability to predict changes in the carbon sink strength of tundra ecosystems. We investigated how spring goose grubbing and summer warming-two key environmental-change drivers in the Arctic-alter CO2 fluxes in three tundra habitats varying in soil moisture and plant-community composition. In a full-factorial experiment in high-Arctic Svalbard, we simulated grubbing and warming over two years and determined summer net ecosystem exchange (NEE) alongside its components: gross ecosystem productivity (GEP) and ecosystem respiration (ER). After two years, we found net CO2 uptake to be suppressed by both drivers depending on habitat. CO2 uptake was reduced by warming in mesic habitats, by warming and grubbing in moist habitats, and by grubbing in wet habitats. In mesic habitats, warming stimulated ER (+75%) more than GEP (+30%), leading to a 7.5-fold increase in their CO2 source strength. In moist habitats, grubbing decreased GEP and ER by similar to 55%, while warming increased them by similar to 35%, with no changes in summer-long NEE. Nevertheless, grubbing offset peak summer CO2 uptake and warming led to a twofold increase in late summer CO2 source strength. In wet habitats, grubbing reduced GEP (-40%) more than ER (-30%), weakening their CO2 sink strength by 70%. One-year CO2-flux responses were similar to two-year responses, and the effect of simulated grubbing was consistent with that of natural grubbing. CO2-flux rates were positively related to aboveground net primary productivity and temperature. Net ecosystem CO2 uptake started occurring above similar to 70% soil moisture content, primarily due to a decline in ER. Herein, we reveal that key environmental-change drivers-goose grubbing by decreasing GEP more than ER and warming by enhancing ER more than GEP-consistently suppress net tundra CO2 uptake, although their relative strength differs among habitats. By identifying how and where grubbing and higher temperatures alter CO2 fluxes across the heterogeneous Arctic landscape, our results have implications for predicting the tundra carbon balance under increasing numbers of geese in a warmer Arctic.

期刊论文 2025-01-01 DOI: 10.1002/ecy.4498 ISSN: 0012-9658

In permafrost regions, vegetation growth is influenced by both climate conditions and the effects of permafrost degradation. Climate factors affect multiple aspects of the environment, while permafrost degradation has a significant impact on soil moisture and nutrient availability, both of which are crucial for ecosystem health and vegetation growth. However, the quantitative analysis of climate and permafrost remains largely unknown, hindering our ability to predict future vegetation changes in permafrost regions. Here, we used statistical methods to analyze the NDVI change in the permafrost region from 1982 to 2022. We employed correlation analysis, multiple regression residual analysis and partial least squares structural equation modeling (PLS-SEM) methods to examine the impacts of different environmental factors on NDVI changes. The results show that the average NDVI in the study area from 1982 to 2022 is 0.39, with NDVI values in 80% of the area remaining stable or exhibiting an increasing trend. NDVI had the highest correlation with air temperature, averaging 0.32, with active layer thickness coming in second at 0.25. Climate change plays a dominant role in NDVI variations, with a relative contribution rate of 89.6%. The changes in NDVI are positively influenced by air temperature, with correlation coefficients of 0.92. Although the active layer thickness accounted for only 7% of the NDVI changes, its influence demonstrated an increasing trend from 1982 to 2022. Overall, our results suggest that temperature is the primary factor influencing NDVI variations in this region.

期刊论文 2025-01-01 DOI: 10.3390/rs17010104

Grapevines are subjected to many physiological and environmental stresses that influence their vegetative and reproductive growth. Water stress, cold damage, and pathogen attacks are highly relevant stresses in many grape-growing regions. Precision viticulture can be used to determine and manage the spatial variation in grapevine health within a single vineyard block. Newer technologies such as remotely piloted aircraft systems (RPASs) with remote sensing capabilities can enhance the application of precision viticulture. The use of remote sensing for vineyard variation detection has been extensively investigated; however, there is still a dearth of literature regarding its potential for detecting key stresses such as winter hardiness, water status, and virus infection. The main objective of this research is to examine the performance of modern remote sensing technologies to determine if their application can enhance vineyard management by providing evidence-based stress detection. To accomplish the objective, remotely sensed data such as the normalized difference vegetation index (NDVI) and thermal imaging from RPAS flights were measured from six commercial vineyards in Niagara, ON, along with the manual measurement of key viticultural data including vine water stress, cold stress, vine size, and virus titre. This study verified that the NDVI could be a useful metric to detect variation across vineyards for agriculturally important variables including vine size and soil moisture. The red-edge and near-infrared regions of the electromagnetic reflectance spectra could also have a potential application in detecting virus infection in vineyards.

期刊论文 2025-01-01 DOI: 10.3390/plants14010137 ISSN: 2223-7747

The Arctic has warmed nearly four times faster than the global average since 1979, resulting in rapid glacier retreat and exposing new glacier forelands. These forelands offer unique experimental settings to explore how global warming impacts ecosystems, particularly for highly climate-sensitive arthropods. Understanding these impacts can help anticipate future biodiversity and ecosystem changes under ongoing warming scenarios. In this study, we integrate data on arthropod diversity from DNA gut content analysis-offering insight into predator diets-with quantitative measures of arthropod activity-density at a Greenland glacier foreland using Structural Equation Modelling (SEM). Our SEM analysis reveals both bottom-up and top-down controlled food chains. Bottom-up control, linked to sit-and-wait predator behavior, was prominent for spider and harvestman populations, while top-down control, associated with active search behavior, was key for ground beetle populations. Bottom-up controlled dynamics predominated during the early stages of vegetation succession, while top-down mechanisms dominated in later successional stages further from the glacier, driven largely by increasing temperatures. In advanced successional stages, top-down cascades intensify intraguild predation (IGP) among arthropod predators. This is especially evident in the linyphiid spider Collinsia holmgreni, whose diet included other linyphiid and lycosid spiders, reflecting high IGP. The IGP ratio in C. holmgreni negatively correlated with the activity-density of ground-dwelling prey, likely contributing to the local decline and possible extinction of this cold-adapted species in warmer, late-succession habitats where lycosid spiders dominate. These findings suggest that sustained warming and associated shifts in food web dynamics could lead to the loss of cold-adapted species, while brief warm events may temporarily impact populations without lasting extinction effects.

期刊论文 2024-12-01 DOI: 10.1002/ece3.70687 ISSN: 2045-7758

Since 2012, the Mountain Excavation and City Construction (MECC) project has been implemented extensively on the Loess Plateau of China, transforming gullies into flat land for urban sprawl by leveling loess hilltops to fill in valleys. However, this unprecedented human activity has caused widespread controversy over its unknown potential ecological impacts. Quantitative assessment of the impacts of the MECC project on the vegetation is key to ecological management and restoration. Taking the largest MECC project area on the Loess Plateau, Yan'an New District (YND), as the study area, this study investigated the spatiotemporal pattern of vegetation dynamics before and after the implementation of the MECC project using a multitemporal normalized difference vegetation index (NDVI) time series from 2009 to 2023 and explored the response of vegetation dynamics to the large-scale MECC project. The results showed that the vegetation dynamics in the YND exhibited significant spatial and temporal heterogeneity due to the MECC project, with the vegetation in the project-affected areas showing rapid damage followed by slow recovery. Vegetation damage occurred only in the project-affected area, and 84 % of these areas began recovery within 10 years, indicating the limited impact of the large-scale MECC project on the regional vegetation. The strong correlation between vegetation dynamics and the MECC project suggested that the destruction and recovery of vegetation in the project -affected areas was mainly under anthropogenic control, which highlights the importance of targeted ecological policies. Specifically, the MECC project induced local anthropogenic damage to the plant population structure during the land creation period, but regeneration and rational allocation of the vegetation were achieved through urbanization, gradually forming a new balanced ecological environment. These findings will contribute to a full understanding of the response of vegetation to such large-scale engineering activities and help local governments adopt projects or policies that facilitate vegetation recovery.

期刊论文 2024-10-10 DOI: 10.1016/j.scitotenv.2024.174256 ISSN: 0048-9697
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 末页
  • 跳转
当前展示1-10条  共51条,6页