共检索到 207

Researchers have tried hard to study the toxic effects of single pollutants like certain antibiotics and nanoplastic particles on plants. But we still know little about how these pollutants interact when they're together in the environment, and what combined toxic effects they have on plants. This study assessed the toxic effects of polystyrene nanoplastics (PS-NPs) and ciprofloxacin (CIP), both individually and in combination, on soybean (Glycine max L.) seedlings by various concentration gradients treatments of PS-NPs (0, 10, 100 mg/L) and CIP (0, 10 mg/L). The results indicated that high concentrations of PS-NPs significantly impeded soybean seedling growth, as evidenced by reductions in root length, plant height, and leaf area. CIP predominantly affected the physiological functions of leaves, resulting in a decrease in chlorophyll content. The combined exposure demonstrated synergistic effects, further intensifying the adverse impacts on the growth and physiological functions of soybean seedlings. Metabolomic analyses indicated that single and combined exposures markedly altered the metabolite expression profiles in soybean leaves, particularly related to amino acid and antioxidant defense metabolic pathways. These results indicate the comprehensive effects of NPs with antibiotics on plants and provide novel insights into toxic mechanisms.

期刊论文 2025-09-15 DOI: 10.1016/j.envpol.2025.126644 ISSN: 0269-7491

Microbial Induced Calcium Carbonate Precipitation (MICP), recognized as a low-carbon and environmentally sustainable consolidation technique, faces challenges related to inhomogeneous consolidation. To mitigate this issue, this study introduces activated carbon into uranium tailings. The porous structure and adsorption capacity of activated carbon enhance bacterial retention time, increase the solidification rate, and promote the growth and distribution of calcium carbonate, resulting in more uniform consolidation and improved mechanical properties of the tailings. Additionally, a novel independently developed grouting method significantly enhances the mechanical strength of the tailing sand samples. To perform a micro-scale analysis of the samples, distinct activated carbon-tailings DEM models are constructed based on varying activated carbon dosages. Physical experiments and parameter calibration are employed to investigate the micro-mechanical properties, such as velocity field and force chain distribution. Experimental and simulation results demonstrate that incorporating activated carbon increases the calcium carbonate production during the MICP process. As the activated carbon content increases, the peak stress of the tailings initially rises and then declines, reaching its maximum at 1.5 % activated carbon content. At 100 kPa confining pressure, the peak stress is 2976.91 kPa, 1.23-1.59 times that of samples without activated carbon and 6.08-7.86 times that of unconsolidated samples. Micro-scale motion analysis reveals that particle movement is predominantly axial at the ends and radial near the central axis. The initial direction of the primary force chains aligns with the loading direction. Following failure, some primary force chains dissipate, while new chains form, predominantly along the axial direction and secondarily in the horizontal direction. Compared with samples without activated carbon, those containing activated carbon exhibit more uniform force chain distribution, higher stress levels, and greater peak stress. This study offers a novel approach to enhance the stabilization and solidification efficiency of MICP and establishes a DEM model that provides valuable insights into the structural deformation and micro-mechanical characteristics of MICPcemented materials.

期刊论文 2025-09-07 DOI: 10.1016/j.seppur.2025.132947 ISSN: 1383-5866

Background: Herbicides are chemical agents that promote plant and crop growth by killing weeds and other pests. However, unconsumed and excessively used herbicides may enter groundwater and agricultural areas, damaging water, air, and soil resources. Mesotrione (MT) is an extensively used herbicide to cultivate corn, sugarcane, and vegetables. Excessive consumption of MT residues pollutes the soil, water, and environmental systems. Methods: Henceforth, the potential electrocatalyst of the tungsten trioxide nanorods on the carbon microsphere (WO3/C) composite was synthesized for nanomolar electrocatalytic detection of MT. The electrocatalysts of WO3/C were synthesized hydrothermally, and the WO3/C composite was in-situ constructed by using the reflux method. Significant findings: Remarkably, the as-prepared WO3/C composite displayed a fantastic sensing platform for MT, characterized by an astonishingly nanomolar detection limit (10 nm), notable sensitivity (1.284 mu A mu M-1 cm-2), exceptional selectivity, and amazing stability. The actual sample test was carried out using MT added in food and environmental samples of corn, sugar cane, sewage water, and river water. The minimum MT response recovery in vegetable and water samples was determined to be approximately 97 % and 99 %, respectively. The results indicate that the WO3/C composite is an effective electrode material for real-time MT measurement in portable devices.

期刊论文 2025-09-01 DOI: 10.1016/j.jtice.2025.106226 ISSN: 1876-1070

To evaluate the beneficial effect of rubber bearings on the seismic performance of underground station structures, three-dimensional finite element models of seismic soil-structural systems are established for a single-layer double span subway station. The seismic mitigation effect is investigated by employing the pushover analysis method. The obtained results indicated that the installation of rubber bearings can effectively alleviate stress concentration and damage degree of the central column, especially at its end area. Compared with the conventional column, the elastic and elastoplastic deformation capacity of the column fitted with rubber bearings both improved significantly. It was also found that the load bearing and deformation performance decrease with the increase of the axial pressure ratio. Furthermore, the lateral force distribution mechanism of the structural system fitted with the rubber bearings is significantly different from the original structure; the deformation and internal forces of central column of the seismic mitigation structure decreased substantially, but side walls' deformation and internal forces increased slightly. The proportion of shear force taken by the central column has decreased, while the side walls have taken larger share, i.e., the rubber bearings facilitated the transfer of seismic forces from the middle column to the side wall.

期刊论文 2025-09-01 DOI: 10.1016/j.soildyn.2025.109487 ISSN: 0267-7261

The cracking during the drying process of thickened tailings stack is a critical issue impacting its stability. This study establishes a comprehensive analytical framework that encompasses both mechanism cognition and technical methodologies by systematically integrating multidimensional research findings. Research indicates that cracking results from the coupling effects of environmental parameters and process conditions. The environmental chamber, with its precise control over external conditions, has emerged as essential experimental equipment for simulating actual working environments. From a mechanical perspective, water evaporation induces volume shrinkage, leading to microcrack formation when local tensile stress surpasses the matrix's tensile strength, ultimately resulting in a network of interconnected cracks. This process is governed by the dual parameters of matric suction and tensile strength. In terms of theoretical modeling, the fracture mechanics model analyzes crack propagation laws from an energy dissipation standpoint, while the stress path analysis model emphasizes the consolidation shrinkage coupling effect. The tensile damage model is particularly advantageous for engineering practice due to its parameter measurability. In numerical simulation technology, the finite element method is constrained by the predetermined crack path, whereas the discrete element method can dynamically reconstruct the crack evolution process but encounters the technical challenge of large-scale multi-field coupling calculations. Research suggests that future efforts should focus on optimizing theoretical prediction models that account for the characteristics and cracking behavior of tailings materials. Additionally, it is essential to develop a comprehensive equipment system that integrates real-time monitoring, intelligent regulation, and data analysis. This paper innovatively proposes the establishment of a multi-scale collaborative research paradigm that integrates indoor testing, numerical simulation, and on-site monitoring. By employing data fusion technology, it aims to enhance the accuracy of crack predictions and provide both theoretical support and technical guarantees for the safety prevention and control of thickened tailings stacks throughout their entire life cycle.

期刊论文 2025-08-15 DOI: 10.1016/j.mineng.2025.109373 ISSN: 0892-6875

Bucket foundations are considered to be environmentally friendly foundations. Their stiffness determines the resonant frequencies and fatigue life of the supported offshore wind turbines. This study proposes a rigorous three-dimensional (3D) elastic solution for the stiffness of laterally loaded bucket foundations in different soil profiles. The lumped spring stiffness acting on the top of the bucket and the exact distribution of the distributed soil spring stiffness along the bucket are first obtained from the analytical model. Closed-form formulae for the lumped spring stiffness are then fitted and verified with the existing studies. To facilitate the engineering application, the distributed soil spring stiffness is then averaged to a uniform distribution using the equivalent work method. Two types of simplified Winkler models are finally proposed and calibrated: one in which the spring stiffness is uniformly distributed along the bucket, and the other in which the distributed Winkler springs are divided into two parts bounded by the centre of rotation. The non-dimensional Winkler springs are mainly related to the bucket aspect ratio, the soil Poisson's ratio and the loading height. It is shown that the lateral soil springs alone, asp-y springs for piles, are not sufficient for bucket foundations. The combined two-part p-y springs and uniform rotational springs are suggested to obtain accurate bucket foundation responses.

期刊论文 2025-08-15 DOI: 10.1016/j.marstruc.2025.103830 ISSN: 0951-8339

On February 6, 2023, two devastating seismic events, the Kahramanmaras, earthquakes, struck the Eastern Anatolian Fault Line (EAF) at 9-h intervals. The first earthquake, with a moment magnitude (Mw) of 7.7, struck the Pazarc & imath;k district, followed by a second earthquake with a moment magnitude (Mw) of 7.6 in the Elbistan district, both within the Kahramanmaras, province. These dual earthquakes directly impacted eleven provinces in Eastern and Southeastern Anatolia leading to significant loss of life and extensive damage to property and infrastructure. This study focuses on revealing the main parameters causing to the collapse of reinforced concrete (RC) buildings by examining their compliance with legislation and earthquake codes in force at the time of construction. For this purpose, detailed examinations such as field observations, collection of general information and official documents about the buildings, determination of material properties and soil characteristics, and three-dimensional finite element (FE) analysis of 400 totally collapsed RC buildings in the Kahramanmaras,, Ad & imath;yaman, Hatay, and Gaziantep provinces, which were among the cities affected by the Kahramanmaras, earthquakes were performed. The findings of this study contribute to a better understanding of the seismic deficiencies of buildings in earthquake-prone regions and provide information on which strategies to develop to increase the resilience of buildings with similar characteristics in other earthquake regions against future seismic events. Considering that the time from the beginning of the construction of the building until its completion consists of several stages, it can be seen that 43.58 % of the errors that cause damage and collapse of the buildings in this study are made in the construction stage, 25.57 % in the FE analysis stage, 24.77 % in the license stage, and 6.07 % in the after construction stage. Thanks to the development process of earthquake codes, regulations in building inspection practices and easier access to quality materials have greatly reduced the damage and collapse of buildings constructed in recent years.

期刊论文 2025-08-01 DOI: 10.1016/j.jobe.2025.112660

The pollution of metal ions triggers great risks of damaging biodiversity and biodiversity-driven ecosystem multifunctioning, whether microbial functional gene can mirror ecosystem multifunctionality in nonferrous metal mining areas remains largely unknown. Macrogenome sequencing and statistical tools are used to decipher linkage between functional genes and ecosystem multifunctioning. Soil samples were collected from subdams in a copper tailings area at various stages of restoration. The results indicated that the diversity and composition of soil bacterial communities were more sensitive than those of the fungal and archaeal communities during the restoration process. The mean method revealed that nutrient, heavy metal, and soil carbon, nitrogen, and phosphorus multifunctionality decreased with increasing bacterial community richness, whereas highly significant positive correlations were detected between the species richness of the bacterial, fungal, and archaeal communities and the multifunctionality of the carbon, nitrogen, and phosphorus functional genes and of functional genes for metal resistance in the microbial communities. SEM revealed that soil SWC and pH were ecological factors that directly influenced abiotic factor-related EMF; microbial diversity was a major biotic factor influencing the functional gene multifunctionality of the microbiota; and different abiotic and biotic factors associated with EMF had differential effects on whole ecosystem multifunctionality. These findings will

期刊论文 2025-07-15 DOI: 10.1016/j.jhazmat.2025.138149 ISSN: 0304-3894

This study evaluates dykes stability of bauxite residue storage facility using limit equilibrium (LEM) and finite element methods (FEM), considering diverse construction phases. In LEM, steady state seepage is simulated using piezometric line while factor of safety (FOS) is determined by Morgenstern-Price method using SLOPE/W. In FEM, actual loading rates and time dependent seepage is modelled by coupled stress-pore water pressure analysis in SIGMA/W and dyke stability is assessed by stress analysis in SLOPE/W, referencing SIGMA/W analysis as a baseline model. Both the analysis incorporated suction and volumetric water content functions to determine FOS. FEM predicted pore pressures are validated against in-situ piezometer data. The results highlight that coupled hydro-mechanical analysis offers accurate stability assessment by integrating stress-strain behaviour, pore pressure changes, seepage paths, and dyke displacements with time. It is found that inclusion of unsaturated parameters in Mohr-Coulomb model improved the reliability in FOS predictions.

期刊论文 2025-07-03 DOI: 10.1080/19386362.2025.2499852 ISSN: 1938-6362

This study quantifies the seismic fragility assessment of shallow-founded buildings in liquefiable and treated soils, enhanced by drainage and densification, considering both short-and long-term behaviors. A conceptual framework is proposed for developing seismic fragility curves based on engineering demand parameters (EDPs) of buildings subjected to various earthquake magnitudes. The framework for establishing seismic fragility curves involves three essential steps. First, nonlinear dynamic analyses of soil-building systems are performed to assess both the short-term response, which occurs immediately following an earthquake, and the longterm response, when excess pore water pressure completely dissipates, and generate a dataset of building settlements. The seismic responses are compared in terms of excess pore water pressure buildup, immediate and residual ground deformation, and building settlement to explore the dynamic mechanisms of soil-building systems and evaluate the performance of enhanced drainage and densification over short-and long-term periods. Second, 38 commonly used and newly proposed intensity measures (IMs) of ground motions (GMs) are comprehensively evaluated using five statistical measures, such as correlation, efficiency, practicality, proficiency, and sufficiency, to identify optimal IMs of GMs. Third, fragility curves are developed to quantify probability of exceeding various capacity limit states, based on structural damage observed in Taiwan, for both liquefaction-induced immediate and residual settlements of buildings under different levels of IMs. Overall, this study proposes a rapid and straightforward probabilistic assessment approach for buildings in liquefiable soils, along with remedial countermeasures to enhance seismic resilience.

期刊论文 2025-07-01 DOI: 10.1016/j.compgeo.2025.107213 ISSN: 0266-352X
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共207条,21页