共检索到 3

This experiment examined the effects of blending bottom ash produced after combusting dry livestock manure (BACL, 2-4 mm particle) as a soil amendment on the physicochemical properties of the root zone and growth response of creeping bentgrass in sandy soil. The treatments were designed as follows: control [100% sand], 3% BACL (3% BACL + 97% sand), 5% BACL (5% BACL + 95% sand), 7% BACL (7% BACL + 93% sand), and 10% BACL (10% BACL + 90% sand). Although BACL improved the soil physical properties, such as the capillary porosity, total porosity, and hydraulic conductivity, it reduced the cation exchangeable capacity. The BACL treatments increased the pH, EC, Av-P2O5, and Ex-K compared to the control. The turf color index, chlorophyll content, shoot length, clipping yield, and shoot dry weight after the BACL treatments were similar to the control. The growth and nutrient uptake of the roots in the BACL treatment were higher than those of the control. The BACL application amount was positively correlated with the capillary porosity and total porosity of the root zone (p <= 0.01) and with the growth and nutrient levels of the roots (p <= 0.05). These results suggest that applying BACL as a soil amendment enhanced the uptake of phosphorus and potassium in the roots of creeping bentgrass by improving the soil porosity in the root zone and by supplying phosphate and potassium.

期刊论文 2025-01-01 DOI: 10.3390/horticulturae11010032

Root-knot nematodes were discovered in severely declining creeping bentgrass putting greens at a golf course in Indian Wells, Riverside County, California. The exhibited disease symptoms included chlorosis, stunted growth, and dieback. Based on morphological examination and measurements of J2 females and males, it was suggested that the causal pathogen was Meloidogyne marylandi. This identification was confirmed by analysis of the D2-D3 expansion segments of 28S rRNA and COI gene sequences. The host status of 28 plant species was evaluated in greenhouse trials. All tested monocots, except rye and Allium species, were found to be hosts, while no reproduction occurred on dicots. Temperature-tank experiments helped determine that the life cycle of M. marylandi was completed between 17-35 degrees C, with a base temperature of 8.3 degrees C and a required heat sum of 493 degree-days (DD). In greenhouse trials in pasteurized soil and near-ideal growing conditions, M. marylandi did not cause significant growth reduction of creeping bentgrass cv. Penn A-4, even at very high J2 inoculation densities. It is highly probable that other biotic and abiotic factors contributed to the observed putting green damage.

期刊论文 2024-03-01 DOI: 10.2478/jofnem-2024-0046 ISSN: 0022-300X

Commercial bacterial exopolysaccharide (EPS) applications have been gaining interest; therefore, strains that provide higher yields are required for industrial-scale processes. Succinoglycan (SG) is a type of bacterial anionic exopolysaccharide produced by Rhizobium, Agrobacterium, and other soil bacterial species. SG has been widely used as a pharmaceutical, cosmetic, and food additive based on its properties as a thickener, texture enhancer, emulsifier, stabilizer, and gelling agent. An SG-overproducing mutant strain (SMC1) was developed from Sinorhizobium meliloti 1021 through N-methyl-N '-nitro-N-nitrosoguanidine (NTG) mutation, and the physicochemical and rheological properties of SMC1-SG were analyzed. SMC1 produced (22.3 g/L) 3.65-fold more SG than did the wild type. Succinoglycan (SMC1-SG) overproduced by SMC1 was structurally characterized by FT-IR and H-1 NMR spectroscopy. The molecular weights of SG and SMC1-SG were 4.20 x 10(5) and 4.80 x 10(5) Da, respectively, as determined by GPC. Based on DSC and TGA, SMC1-SG exhibited a higher endothermic peak (90.9 degrees C) than that of SG (77.2 degrees C). Storage modulus (G ') and loss modulus (G '') measurements during heating and cooling showed that SMC1-SG had improved thermal behavior compared to that of SG, with intersections at 74.9 degrees C and 72.0 degrees C, respectively. The SMC1-SG ' s viscosity reduction pattern was maintained even at high temperatures (65 degrees C). Gelation by metal cations was observed in Fe3+ and Cr3+ solutions for both SG and SMC1-SG. Antibacterial activities of SG and SMC1-SG against Escherichia coli and Staphylococcus aureus were also observed. Therefore, like SG, SMC1-SG may be a potential biomaterial for pharmaceutical, cosmetic, and food industries.

期刊论文 2024-01-01 DOI: 10.3390/polym16020244
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页