共检索到 2

Chilled meat is prone to microbial contamination during storage, resulting in a shortened shelf life. This study developed multifunctional biodegradable aerogel with water absorption, antibacterial, and sustained release properties as a preservation pad for meat, using corn straw cellulose nanocrystals (CSCNCs) and acetylated starch (AS) as the structural skeleton and thymol (TMO) nanoemulsions as antimicrobials. The effects of different mass ratios of CSCNCs/AS on the morphology, structure, physical properties, and release behavior of aerogels were systematically analyzed. Additionally, their antibacterial properties, biocompatibility, and biodegradability were investigated. The results showed that the aerogels with CSCNC/AS mass ratio of 1:5 had a tailored structure for loading TMO nanoemulsions, as well as excellent water absorption, mechanical properties, and thermal stability. Due to strong hydrogen bonding and a porous structure, the TMO in the aerogels was continuously and uniformly released into high-water-activity and fatty food simulants, mainly controlled by Fickian diffusion. Furthermore, it exhibited superior antibacterial properties and biocompatibility. The application of aerogels for chilled beef preservation extended the shelf life from 8 days to approximately 12 days, which was superior to commercially available preservation pads. Notably, the aerogels exhibited superior biodegradability in soil. Therefore, the prepared aerogel preservation pads showed great potential in preserving chilled meat.

期刊论文 2025-01-15 DOI: 10.1016/j.carbpol.2024.122758 ISSN: 0144-8617

The alarming issue of food waste, coupled with the potential risks posed by petroleum-based plastic preservation materials to both the environment and human health necessitate innovative solutions. In this study, we prepared nanoemulsions (NEs) of chitosan (CS) and ginger essential oil (GEO) and systematically evaluated the effects of varying NEs concentrations (0, 10 %, 30 %, 50 %) on the physicochemical properties and biological activities of gelatin films. These films were subsequently applied to blueberry preservation. The scanning electron microscopy confirmed that the NEs were well-integrated with the Gel matrix, significantly enhancing the performance of the Gel films, including improvements of mechanical properties (tensile strength from 7.71 to 19.92 MPa; elongation at break from 38.55 to 113.65 %), thermal, and barrier properties (water vapor permeability from 1.52 x 10(-9)to 6.54 x 10(-10) g & sdot;m/Pa & sdot;s & sdot;m(2)). The films exhibited notable antibacterial and antioxidant activities due to the gradual release of GEO, thereby extending the storage life of blueberries. Moreover, the prepared composite films demonstrated excellent biodegradability and environmental friendliness, with the majority of the material decomposing within 30 days under soil microbial action. In conclusion, the active films loaded with NEs exhibit superior performance and hold significant potential for developing biodegradable materials for food preservation.

期刊论文 2024-11-01 DOI: 10.1016/j.ijbiomac.2024.135791 ISSN: 0141-8130
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页