共检索到 13

Environmental changes, such as climate warming and higher herbivory pressure, are altering the carbon balance of Arctic ecosystems; yet, how these drivers modify the carbon balance among different habitats remains uncertain. This hampers our ability to predict changes in the carbon sink strength of tundra ecosystems. We investigated how spring goose grubbing and summer warming-two key environmental-change drivers in the Arctic-alter CO2 fluxes in three tundra habitats varying in soil moisture and plant-community composition. In a full-factorial experiment in high-Arctic Svalbard, we simulated grubbing and warming over two years and determined summer net ecosystem exchange (NEE) alongside its components: gross ecosystem productivity (GEP) and ecosystem respiration (ER). After two years, we found net CO2 uptake to be suppressed by both drivers depending on habitat. CO2 uptake was reduced by warming in mesic habitats, by warming and grubbing in moist habitats, and by grubbing in wet habitats. In mesic habitats, warming stimulated ER (+75%) more than GEP (+30%), leading to a 7.5-fold increase in their CO2 source strength. In moist habitats, grubbing decreased GEP and ER by similar to 55%, while warming increased them by similar to 35%, with no changes in summer-long NEE. Nevertheless, grubbing offset peak summer CO2 uptake and warming led to a twofold increase in late summer CO2 source strength. In wet habitats, grubbing reduced GEP (-40%) more than ER (-30%), weakening their CO2 sink strength by 70%. One-year CO2-flux responses were similar to two-year responses, and the effect of simulated grubbing was consistent with that of natural grubbing. CO2-flux rates were positively related to aboveground net primary productivity and temperature. Net ecosystem CO2 uptake started occurring above similar to 70% soil moisture content, primarily due to a decline in ER. Herein, we reveal that key environmental-change drivers-goose grubbing by decreasing GEP more than ER and warming by enhancing ER more than GEP-consistently suppress net tundra CO2 uptake, although their relative strength differs among habitats. By identifying how and where grubbing and higher temperatures alter CO2 fluxes across the heterogeneous Arctic landscape, our results have implications for predicting the tundra carbon balance under increasing numbers of geese in a warmer Arctic.

期刊论文 2025-01-01 DOI: 10.1002/ecy.4498 ISSN: 0012-9658

Generally, with increasing elevation, there is a corresponding decrease in annual mean air and soil temperatures, resulting in an overall decrease in ecosystem carbon dioxide (CO2) exchange. However, there is a lack of knowledge on the variations in CO2 exchange along elevation gradients in tundra ecosystems. Aiming to quantify CO2 exchange along elevation gradients in tundra ecosystems, we measured ecosystem CO2 exchange in the peak growing season along an elevation gradient (9-387 m above sea level, m.a.s.l) in an arctic heath tundra, West Greenland. We also performed an ex-situ incubation experiment based on soil samples collected along the elevation gradient, to assess the sensitivity of soil respiration to changes in temperature and soil moisture. There was no apparent temperature gradient along the elevation gradient, with the lowest air and soil temperatures at the second lowest elevation site (83 m). The lowest elevation site exhibited the highest net ecosystem exchange (NEE), ecosystem respiration (ER) and gross ecosystem production (GEP) rates, while the other three sites generally showed intercomparable CO2 exchange rates. Topography aspect-induced soil microclimate differences rather than the elevation were the primary drivers for the soil nutrient status and ecosystem CO2 exchange. The temperature sensitivity of soil respiration above 0 degrees C increased with elevation, while elevation did not regulate the temperature sensitivity below 0 degrees C or the moisture sensitivity. Soil total nitrogen, carbon, and ammonium contents were the controls of temperature sensitivity below 0 degrees C. Overall, our results emphasize the significance of considering elevation and microclimate when predicting the response of CO2 balance to climate change or upscaling to regional scales, particularly during the growing season. However, outside the growing season, other factors such as soil nutrient dynamics, play a more influential role in driving ecosystem CO2 fluxes. To accurately upscale or predict annual CO2 fluxes in arctic tundra regions, it is crucial to incorporate elevation-specific microclimate conditions into ecosystem models.

期刊论文 2024-12-01 DOI: 10.1016/j.geoderma.2024.117108 ISSN: 0016-7061

Increased soil nutrient availability, and associated increases in vegetation productivity, could create a negative feedback between Arctic ecosystems and the climate system, thereby reducing the contribution of Arctic ecosystems to future climate change. To predict whether this feedback will develop, it is important to understand the environmental controls over nutrient cycling in High Arctic ecosystems and their impact on carbon cycling processes. Here, we examined the environmental controls over soil nitrogen availability in a High Arctic wet sedge meadow and how abiotic factors and soil nitrogen influenced carbon dioxide exchange processes. The importance of environmental variables was consistent over the 3 years, but the magnitudes of their effect varied depending on climate conditions. Ammonium availability was higher in warmer years and wetter conditions, while drier areas within the wetland had higher nitrate availability. Carbon uptake was driven by soil moisture, active layer depth, and variability between sampling sites and years (R2 = 0.753), while ecosystem respiration was influenced by nitrogen availability, soil temperature, active layer depth, and sampling year (R2 = 0.848). Considered together, the future carbon dioxide source or sink potential of high latitude wetlands will largely depend on climate-induced changes in moisture and subsequent impacts on nutrient availability. wetland, climate change

期刊论文 2024-03-01 DOI: 10.1139/as-2022-0048

Permafrost degradation in peatlands is altering vegetation and soil properties and impacting net carbon storage. We studied four adjacent sites in Alaska with varied permafrost regimes, including a black spruce forest on a peat plateau with permafrost, two collapse scar bogs of different ages formed following thermokarst, and a rich fen without permafrost. Measurements included year-round eddy covariance estimates of net carbon dioxide (CO2), mid-April to October methane (CH4) emissions, and environmental variables. From 2011 to 2022, annual rainfall was above the historical average, snow water equivalent increased, and snow-season duration shortened due to later snow return. Seasonally thawed active layer depths also increased. During this period, all ecosystems acted as slight annual sources of CO2 (13-59 g C m(-2) year(-1)) and stronger sources of CH4 (11-14 g CH4 m(-2) from similar to April to October). The interannual variability of net ecosystem exchange was high, approximately +/- 100 g C m(-2) year(-1), or twice what has been previously reported across other boreal sites. Net CO2 release was positively related to increased summer rainfall and winter snow water equivalent and later snow return. Controls over CH4 emissions were related to increased soil moisture and inundation status. The dominant emitter of carbon was the rich fen, which, in addition to being a source of CO2, was also the largest CH4 emitter. These results suggest that the future carbon-source strength of boreal lowlands in Interior Alaska may be determined by the area occupied by minerotrophic fens, which are expected to become more abundant as permafrost thaw increases hydrologic connectivity. Since our measurements occur within close proximity of each other (<= 1 km(2)), this study also has implications for the spatial scale and data used in benchmarking carbon cycle models and emphasizes the necessity of long-term measurements to identify carbon cycle process changes in a warming climate.

期刊论文 2024-01-01 DOI: 10.1111/gcb.17139 ISSN: 1354-1013

Cold seasons in Arctic ecosystems are increasingly important to the annual carbon balance of these vulnerable ecosystems. Arctic winters are largely harsh and inaccessible leading historic data gaps during that time. Until recently, cold seasons have been assumed to have negligible impacts on the annual carbon balance but as data coverage increases and the Arctic warms, the cold season has been shown to account for over half of annual methane (CH4) emissions and can offset summer photosynthetic carbon dioxide (CO2) uptake. Freeze-thaw cycle dynamics play a critical role in controlling cold season CO(2)and CH(4)loss, but the relationship has not been extensively studied. Here, we analyze freeze-thaw processes through in situ CO(2)and CH(4)fluxes in conjunction with soil cores for physical structure and porewater samples for redox biogeochemistry. We find a movement of water toward freezing fronts in soil cores, leaving air spaces in soils, which allows for rapid infiltration of oxygen-rich snow melt in spring as shown by oxidized iron in porewater. The snow melt period coincides with rising ecosystem respiration and can offset up to 41% of the summer CO(2)uptake. Our study highlights this important seasonal process and shows spring greenhouse gas emissions are largely due to production from respiration instead of only bursts of stored gases. Further warming is projected to result in increases of snowpack and deeper thaws, which could increase this ecosystem respiration dominate snow melt period causing larger greenhouse gas losses during spring.

期刊论文 2020-09-01 DOI: 10.1111/gcb.15193 ISSN: 1354-1013

Global warming has greatly altered winter snowfall patterns, and there is a trend towards increasing winter snow in semi-arid regions in China. Winter snowfall is an important source of water during early spring in these water-limited ecosystems, and it can also affect nutrient supply. However, we know little about how changes in winter snowfall will affect ecosystem productivity and plant community structure during the growing season. Here, we conducted a 5-year winter snow manipulation experiment in a temperate grassland in Inner Mongolia. We measured ecosystem carbon flux from 2014 to 2018 and plant biomass and species composition from 2015 to 2018. We found that soil moisture increased under deepened winter snow in early growing season, particularly in deeper soil layers. Deepened snow increased the net ecosystem exchange of CO2 (NEE) and reduced intra- and inter-annual variation in NEE. Deepened snow did not affect aboveground plant biomass (AGB) but significantly increased root biomass. This suggested that the enhanced NEE was allocated to the belowground, which improved water acquisition and thus contributed to greater stability in NEE in deep-snow plots. Interestingly, the AGB of grasses in the control plots declined over time, resulting in a shift towards a forb-dominated system. Similar declines in grass AGB were also observed at three other locations in the region over the same time frame and are attributed to 4 years of below-average precipitation during the growing season. By contrast, grass AGB was stabilized under deepened winter snow and plant community composition remained unchanged. Hence, our study demonstrates that increased winter snowfall may stabilize arid grassland systems by reducing resource competition, promoting coexistence between plant functional groups, which ultimately mitigates the impacts of chronic drought during the growing season.

期刊论文 2020-05-01 DOI: 10.1111/gcb.15051 ISSN: 1354-1013

The melting of permafrost and the degradation of alpine meadow ecosystems caused by climate warming and high-intensity human activities have imposed serious threats to local and global ecological security. In order to estimate the effects of climate warming and grazing interference on the photosynthesis and respiration of alpine meadow plant community in permafrost regions, warming - infrared radiator is applied to simulate the climate warming (increasing temperature by +2 degrees C). The winter grazing level is simulated by mowing the aboveground biomass of all plants. The responses of permafrost meadow community in terms of photosynthesis, respiration, surface soil temperature and moisture, as well as the carbon balance to simulated different climate warming and grazing level were analyzed and discussed. The results showed that: (1) the surface soil temperature in climate warming and grazing plots is significantly higher than in Ck plots (P< 0.01); (2) warming and warming + grazing plots enhanced community photosynthesis and respiration (P< 0.01); (3) warming and warming + grazing treatments increased community aboveground biomass (P< 0.05); (4) the photosynthetic rate increased in the second year, then decreased in the third year when both temperature and grazing level increased during the growing season. However, the ecosystem respiration increasingly increased year by year; (5) compared with the control groups, warming and grazing treatments resulted in an increase in carbon sequestration of the permafrost meadow community during the growing season.

期刊论文 2020-05-01 DOI: 10.1134/S1067413620030042 ISSN: 1067-4136

Quantifying net CO2 exchange (NEE) of arctic terrestrial ecosystems in response to changes in climatic and environmental conditions is central to understanding ecosystem functioning and assessing potential feedbacks of the carbon cycle to future climate changes. However, annual CO2 budgets for arctic tundra are rare due to the difficulties of performing measurements during non-growing seasons. It is still unclear to what extent arctic tundra ecosystems currently act as a CO2 source, sink or are in balance. This study presents year-round eddy-covariance (EC) measurements of CO2 fluxes for an arctic heath ecosystem on Disko Island, West Greenland (69 degrees N) over five years. Based on a fusion of year-round EC-derived CO2 fluxes, soil temperature and moisture, the process-oriented model (CoupModel) has been constrained to quantify an annual budget and characterize seasonal patterns of CO2 fluxes. The results show that total photosynthesis corresponds to -202 +/- 20 g C m(-2) yr(-1) with ecosystem respiration of 167 +/- 28 g C m(-2) yr(-1), resulting in NEE of -35 +/- 15 g C m(-2) y(-1). The respiration loss is mainly described as decomposition of near- surface litter. A year with an anomalously deep snowpack shows a threefold increase in the rate of ecosystem respiration compared to other years. Due to the high CO2 emissions during that winter, the annual budget results in a marked reduction in the CO2 sink. The seasonal patterns of photosynthesis and soil respiration were described using response functions of the forcing atmosphere and soil conditions. Snow depth, topography-related soil moisture, and growing season warmth are identified as important environmental characteristics which most influence seasonal rates of gas exchange.

期刊论文 2019-07-15 DOI: 10.1016/j.agrformet.2019.02.021 ISSN: 0168-1923

Eastern Siberia Russia is currently experiencing a distinct and unprecedented rate of warming. This change is particularly important given the large amounts of carbon stored in the yedoma permafrost soils that become vulnerable to thaw and release under warming. Data from this region pertaining to year-round carbon, water, and energy fluxes are scarce, particularly in sensitive ecotonal ecosystems near latitudinal treeline, as well as those already impacted by permafrost thaw. Here we investigated the interannual and seasonal carbon dioxide, water, and energy dynamics at an ecotonal forested site and a disturbed thermokarst-impacted site. The ecotonal site was approximately neutral in terms of CO2 uptake/release, while the disturbed site was either a source or neutral. Our data suggest that high rates of plant productivity during the growing season at the disturbed site may, in part, counterbalance higher rates of respiration during the cold season compared to the ecotonal site. We also found that the ecotonal site was sensitive to the timing of the freezeup of the soil active layer in fall, releasing more CO2 when freezeup occurred later. Both sites showed a negative water balance, although the ecotonal site appeared more sensitive to dry conditions. Water use efficiency at the ecotonal site was lower during warmer summers. Overall, these Siberian measurements indicate ecosystem sensitivity to warmer conditions during the fall and to drier conditions during the growing season and provide a better understanding of ecosystem response to climate in a part of the circumpolar Arctic where current knowledge is weakest. Plain Language Summary As Siberia warms, the frozen soils known as permafrost start to thaw, causing an irregular terrain of pits and mounds called thermokarst. Large amounts of carbon in Siberian soils have been locked away in permafrost for thousands of years, becoming vulnerable to release under thaw and thermokarst formation. This will potentially result in large amounts of additional greenhouse gases in the atmosphere, amplifying climate warming. We examined carbon dioxide (CO2) fluxes over multiple years at two sites in northeastern Siberia, an ecotonal site that lies at the transition between the boreal forest and tundra biomes, and a site with thermokarst. We found that the ecotonal site is carbon neutral, consuming the same amount of CO2 as it takes up from the atmosphere. However, this site releases greater amounts of CO2 in years when soil freeze occurred later, which is expected to become common in the future. The thermokarst site released significantly more CO2, but it was also marked by greater plant growth, thereby off-setting some of the CO2 lost. Due, in part, to a lack of data, models represent terrestrial ecosystem carbon dynamics in Siberia poorly and do not take into changes in carbon cycling that occur with thermokarst formation.

期刊论文 2017-10-01 DOI: 10.1002/2017JG004070 ISSN: 2169-8953

Rapid Arctic warming is expected to increase global greenhouse gas concentrations as permafrost thaw exposes immense stores of frozen carbon (C) to microbial decomposition. Permafrost thaw also stimulates plant growth, which could offset C loss. Using data from 7 years of experimental Air and Soil warming in moist acidic tundra, we show that Soil warming had a much stronger effect on CO2 flux than Air warming. Soil warming caused rapid permafrost thaw and increased ecosystem respiration (Reco), gross primary productivity (GPP), and net summer CO2 storage (NEE). Over 7 years Reco, GPP, and NEE also increased in Control (i.e., ambient plots), but this change could be explained by slow thaw in Control areas. In the initial stages of thaw, Reco, GPP, and NEE increased linearly with thaw across all treatments, despite different rates of thaw. As thaw in Soil warming continued to increase linearly, ground surface subsidence created saturated microsites and suppressed Reco, GPP, and NEE. However Reco and GPP remained high in areas with large Eriophorum vaginatum biomass. In general NEE increased with thaw, but was more strongly correlated with plant biomass than thaw, indicating that higher Reco in deeply thawed areas during summer months was balanced by GPP. Summer CO2 flux across treatments fit a single quadratic relationship that captured the functional response of CO2 flux to thaw, water table depth, and plant biomass. These results demonstrate the importance of indirect thaw effects on CO2 flux: plant growth and water table dynamics. Nonsummer Reco models estimated that the area was an annual CO2 source during all years of observation. Nonsummer CO2 loss in warmer, more deeply thawed soils exceeded the increases in summer GPP, and thawed tundra was a net annual CO2 source.

期刊论文 2017-09-01 DOI: 10.1111/gcb.13661 ISSN: 1354-1013
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共13条,2页