Increased soil nutrient availability, and associated increases in vegetation productivity, could create a negative feedback between Arctic ecosystems and the climate system, thereby reducing the contribution of Arctic ecosystems to future climate change. To predict whether this feedback will develop, it is important to understand the environmental controls over nutrient cycling in High Arctic ecosystems and their impact on carbon cycling processes. Here, we examined the environmental controls over soil nitrogen availability in a High Arctic wet sedge meadow and how abiotic factors and soil nitrogen influenced carbon dioxide exchange processes. The importance of environmental variables was consistent over the 3 years, but the magnitudes of their effect varied depending on climate conditions. Ammonium availability was higher in warmer years and wetter conditions, while drier areas within the wetland had higher nitrate availability. Carbon uptake was driven by soil moisture, active layer depth, and variability between sampling sites and years (R2 = 0.753), while ecosystem respiration was influenced by nitrogen availability, soil temperature, active layer depth, and sampling year (R2 = 0.848). Considered together, the future carbon dioxide source or sink potential of high latitude wetlands will largely depend on climate-induced changes in moisture and subsequent impacts on nutrient availability. wetland, climate change
2024-03-01 Web of ScienceArctic warming and changing precipitation patterns are altering soil nutrient availability and other processes that control the greenhouse gas balance of high-latitude ecosystems. Changes to these biogeochemical processes will ultimately determine whether the Arctic will enhance or dampen future climate change. At the Cape Bounty Arctic Watershed Observatory, a full-factorial International Tundra Experiment site was established in 2008, allowing for the investigation of ten years of experimental warming and increased snow depth on nutrient availability and trace gas exchange in a mesic heath tundra across two growing seasons (2017 and 2018). Plots with open-top chambers (OTCs) had drier soils (p < .1) that released 1.5 times more carbon dioxide (p < .05), and this effect was enhanced in the drier growing season. Increased snow depth delayed the onset of thaw and active layer development (p < .1) and corresponded with greater nitrous oxide release (p < .05). Our results suggest that decreases to soil moisture will lead to an increase in nitrate availability, soil respiration, and nitrous oxide fluxes. Ultimately, these effects may be moderated by the magnitude of future shifts and interactions between climate variability and ecological responses to permafrost thaw.
2023-12-31 Web of ScienceChanges in soil CO2 and N2O emissions due to climate change and nitrogen input will result in increased levels of atmospheric CO2 and N2O, thereby feeding back into Earth's climate. Understanding the responses of soil carbon and nitrogen emissions mediated by microbe from permafrost peatland to temperature rising is important for modeling the regional carbon and nitrogen balance. This study conducted a laboratory incubation experiment at 15 and 20 degrees C to observe the impact of increasing temperature on soil CO2 and N2O emissions and soil microbial abundances in permafrost peatland. An NH4NO3 solution was added to soil at a concentration of 50 mg N kg(-1) to investigate the effect of nitrogen addition. The results indicated that elevated temperature, available nitrogen, and their combined effects significantly increased CO2 and N2O emissions in permafrost peatland. However, the temperature sensitivities of soil CO2 and N2O emissions were not affected by nitrogen addition. Warming significantly increased the abundances of methanogens, methanotrophs, and nirK-type denitrifiers, and the contents of soil dissolved organic carbon (DOC) and ammonia nitrogen, whereas nirS-type denitrifiers, beta-1,4-glucosidase (beta G), cellobiohydrolase (CBH), and acid phosphatase (AP) activities significantly decreased. Nitrogen addition significantly increased soil nirS-type denitrifiers abundances, beta-1,4-N- acetylglucosaminidase (NAG) activities, and ammonia nitrogen and nitrate nitrogen contents, but significantly reduced bacterial, methanogen abundances, CBH, and AP activities. A rising temperature and nitrogen addition had synergistic effects on soil fungal and methanotroph abundances, NAG activities, and DOC and DON contents. Soil CO2 emissions showed a significantly positive correlation with soil fungal abundances, NAG activities, and ammonia nitrogen and nitrate nitrogen contents. Soil N2O emissions showed positive correlations with soil fungal, methanotroph, and nirK-type denitrifiers abundances, and DOC, ammonia nitrogen, and nitrate contents. These results demonstrate the importance of soil microbes, labile carbon, and nitrogen for regulating soil carbon and nitrogen emissions. The results of this study can assist simulating the effects of global climate change on carbon and nitrogen cycling in permafrost peatlands.
2022-12-13 Web of SciencePermafrost-affected tundra soils are large carbon (C) and nitrogen (N) reservoirs. However, N is largely bound in soil organic matter (SOM), and ecosystems generally have low N availability. Therefore, microbial induced N-cycling processes and N losses were considered negligible. Recent studies show that microbial N processing rates, inorganic N availability, and lateral N losses from thawing permafrost increase when vegetation cover is disturbed, resulting in reduced N uptake or increased N input from thawing permafrost. In this review, we describe currently known N hotspots, particularly bare patches in permafrost peatland or permafrost soils affected by thermokarst, and their microbiogeochemical characteristics, and present evidence for previously unrecorded N hotspots in the tundra. We summarize the current understanding of microbial N cycling processes that promote the release of the potent greenhouse gas (GHG) nitrous oxide (N2O) and the translocation of inorganic N from terrestrial into aquatic ecosystems. We suggest that certain soil characteristics and microbial traits can be used as indicators of N availability and N losses. Identifying N hotspots in permafrost soils is key to assessing the potential for N release from permafrost-affected soils under global warming, as well as the impact of increased N availability on emissions of carbon-containing GHGs.
2022-09-01 Web of SciencePlant species composition influences belowground ecosystem function. However, there are few data on the interactive effects of plant diversity and soil function. We surveyed plant species diversity, and determined soil carbon (C), nitrogen (N) fractions and enzyme activity in five peatlands with different vegetation-types. We also investigated the interactions between plant species diversity and richness, and soil biochemical properties. We found a close relationship between plant species diversity and total carbon (TC) in both surface (0-15 cm) and subsoil (15-30 cm) layers. Plant diversity and richness positively correlated with soil dissolved organic carbon (DOC), NH4+-N in both soil layers and subsoil moisture and total nitrogen (TN), as well as topsoil pH. Plant species diversity and richness were also positively correlated with subsoil moisture, pH, protease, acid phosphatase activity and topsoil urease activity. Soil beta-glucosidase, invertase, urease, protease, and acid phosphatase activity positively correlated with soil TC, TN, DOC, available N and soil moisture. Our findings demonstrate that plant community diversity is linked with soil C and N turnover through soil enzyme activity. These results will improve our ability to more fully understand the linkages between aboveground and belowground components in peatland ecosystems.
2019-08-01 Web of ScienceThe lack of snow cover due to winter climate change has great potential to impact winter soil nitrogen cycling in boreal forests. A snow manipulation was conducted in a Tibetan spruce forest to explore the effects of snow absence on winter soil nitrogen dynamics by shelter method. Snow absence on average reduced soil temperatures at the depths of 0 cm and 5 cm by 1.44 degrees C and 0.33 degrees C, respectively, throughout the winter. Moreover, snow absence increased soil frost and freeze-thaw cycles. Soil net nitrogen mineralization and labile nitrogen pools (ammonium, nitrate and dissolved organic nitrogen) were higher in the snow absence plots compared to control plots. Snow absence increased soil microbial biomass carbon but did not affect microbial biomass nitrogen. Nevertheless, soil enzyme activities involved in nitrogen cycles were often lowered by snow absence over the winter. The results noted in this study suggest that warming-induced absence in seasonal snowpack may stimulate winter soil nitrogen availabilities by changing soil microhabitats, which has important implications for soil biogeochemical cycles in the subalpine forest ecosystems on the eastern Tibetan Plateau.
2017-12-01 Web of Science