The existence of rock weathering products has an important effect on the infiltration of water in the soil. Understanding the mechanism of water infiltration in a mixed soil and weathered rock debris medium is highly important for soil science and hydrology. The purpose of this study is to explore the effects of mudstone hydrolysis on water infiltration in the soil under different mixing ratios (0-70 %) of weathered mudstone contents. Soil column experiments and numerical modelling were used to study the processes of hydrolysis of weathered mudstone and water infiltration in the mixed medium. The results revealed that water immersion can cause the dense mudstone surface to fall off, thus forming pores, and that the amount of these pores first increase but then decrease over time. The disintegration of post-hydrolysis mudstone debris occurs mainly among particles ranging from 2-2000 mu m, predominantly transforming sand particles into finer fractions. Increasing the mudstone content in the soil from 0 % to 50 % enhances the infiltration rate and cumulative infiltration volume. However, when the mudstone content exceeds 50 %, these parameters decrease. The mudstone weathering products promote water infiltration in the soil within a certain range of mudstone contents, but as the ratio of weathered products increases, excessive amounts of mudstone hinder the movement of water in the soil. The identified transformation phenomenon suggests that the infiltration capacity of mixed soil will not scale linearly with mudstone content. The findings enable some mitigation strategies of geologic hazards based on the hydrological stability in heterogeneous environments.
Soil-plant-atmosphere interaction (SPAI) plays a significant role on the safety and serviceably of geotechnical infrastructure. The mechanical and hydraulic soil behaviour varies with the soil water content and pore water pressures (PWP), which are in turn affected by vegetation and weather conditions. Focusing on the hydraulic reinforcement that extraction of water through the plant roots offers, this study couples advances in ecohydrological modelling with advances in geotechnical modelling, overcoming previous crude assumptions around the application of climatic effects on the geotechnical analysis. A methodology for incorporating realistic ecohydrological effects in the geotechnical analysis is developed and validated, and applied in the case study of a cut slope in Newbury, UK, for which field monitoring data is available, to demonstrate its successful applicability in boundary value problems. The results demonstrate the positive effect of vegetation on the infrastructure by increasing the Factor of Safety. Finally, the effect of climate change and changes in slope vegetation cover are investigated. The analysis results demonstrate that slope behaviour depends on complex interactions between the climate and the soil hydraulic properties and cannot be solely anticipated based on climate data, but suctions and changes in suction need necessarily to be considered.
In recent years, there has been an increased focus on the research of earthen construction, driven by the rising demand for low-cost and sustainable building materials. Numerous studies have investigated the properties of compressed earth blocks (CEBs), however, very few have examined the properties of earth-based mortar. Mortar is an essential component and further investigation is required to enhance the mechanical performance of CEB structures. The study focuses on raw earth mortar (REM), which is a rudimentary mix of water with natural earth consisting of sand, silt and clay. Through experimental investigation, the fresh and hardened properties of three REM mixes were examined to determine the influence of cement stabilisation and jute fibre reinforcement. Shear triplet CEB assemblages were manufactured and tested to determine the initial shear strength of each mortar mix. The addition of 20 mm jute fibre at 0.25 % by weight increased the compressive and flexural strength of cement-stabilised raw earth mortar by 12 % and 20 % respectively. The addition of jute fibre also enhanced the initial shear strength, angle of internal friction and coefficient of friction during shear triplet testing. Finite element analysis (FEA) was undertaken to model the failure mechanism of the CEB assemblages, employing the use of cohesive zone modelling. The results of the FEA provided a satisfactory correspondence to the behaviour observed during experimental analysis and were within +/- 5.0 % of the expected values. The outcome of this investigation demonstrates the potential of REM and contributes to the development of low-cost and sustainable earth construction.
The present document presents a review on the use of the finite element software package CODE_BRIGHT to simulate reinforced soil structures (RSS). RSS are composed of longitudinal steel or polymeric materials, placed orthogonal to the main stress direction in a soil mass, acting as tension-bearing elements. A common application of RSS is in retaining structures, in the form of reinforced soil walls (RSWs). RSW are usually designed with analytical methods, which have limited capabilities when predicting a structure's deformation response. To improve on this, the use of numerical tools allows to quantify the stress-strain response of complex, compound structures, such as RSWs. Several factors must be considered when modelling RSS, including reinforcement response, which can be non-linear under several circumstance (including time- and temperature-dependencies), soil-reinforcement interaction, soil-structure interaction, and soil response, all of which can be affected by the presence of moisture. Using laboratory measured data, the individual response of reinforcements (e.g., creep elongation), as well as the compound behaviour of soil-reinforcement material (e.g., pullout response) can be simulated to explore individual and compound response. Depending on the modelled phenomena, numerical simulations may include 2D and 3D representations. For full-scale reinforced soil walls, the stress-strain response within the soil mass, reinforcements, concrete facing panels, and connections can be studied in magnitude and distribution. Details regarding special considerations of how to model such structures with CODE_BRIGHT and other commercially available software are provided. Insights on the thermo-hydraulic repone of RSWs are covered. Advantages, limitations and future lines of research in the use of CODE_BRIGHT are explored.
In this study, 2D and 3D modelling strategies are used to represent the behaviour of historical masonry buildings on strip foundations undergoing settlements. The application focuses on a two-story building, typical of the Dutch architectural heritage. An improved 2D modelling is presented: It includes the effect of the lateral walls to replicate the response of the detailed 3D models. The masonry strip foundation is modelled and supported by a no-tension interface, which represents the soil-foundation interaction. Two settlement configurations, hogging and sagging, are applied to the models, and their intensity is characterized using their angular distortion. The improved 2D model that includes the stiffness and weight of the lateral walls agrees in terms of displacements, stress and damage with the detailed 3D models. Conversely, the simplified 2D facade models without lateral walls exhibit different cracking, and damage from 2 to 7 times lower at an applied angular distortion of 2 parts per thousand (1/500). The improved 2D model requires less computational and modelling burden, resulting in analyses from 9 to 40 times faster than the 3D models. The results prove the importance of identifying and including the 3D effects that affect the response of structures subjected to settlements.
Heating method shows considerable potential for mitigating frost heave of subgrade in cold regions. However, the water-heat-deformation characteristics of subgrade under the coupling effect of freezing-thawing and heating effect remain unclear, which hampers the optimization and widespread application of heating method. Therefore, this paper proposes a numerical model of subgrade water-heat-deformation considering heating effect. The influence and mechanism of heating effect on water-heat-deformation of subgrade is systematically analyzed. The results show that the heating effect changes the water-heat-deformation state of subgrade. Furthermore, the combined influence of shady-sunny slope effect and ballast layer ensures that ground temperature near the subgrade center remains above 0 degrees C, thereby preventing the formation of ice lenses and frost heave. However, the shoulders on both sides enter a freezing state, and freezing rate, freezing depth and frost heave are reduced by more than 45 %, 60 % and 60 % respectively compared with the comparison subgrade. The freezing depth, driving force and rate of water migration are significantly affected by heating effect, which increases the pathways of water upward migration and greatly weakens the segregated frost heave of subgrade. This is the primary mechanism through which the heating method effectively mitigates frost heave in subgrades.
Loose fill slopes are prevalent worldwide, and their failure during rainstorms is frequently documented. While existing studies have primarily focused on the initiation of such failures, the post-failure motion of rainfallinduced loose fill slope failures has rarely been explored. This study addresses this knowledge gap by investigating both the initiation and subsequent motion of rainfall-induced loose fill slope failures. To achieve this goal, a hydro-mechanical coupled MPM model was utilized to back-analyze the catastrophic 1976 Sau Mau Ping landslide in Hong Kong and conduct parametric studies. From an engineering perspective, the contractive behaviour of loose coarse-grained soil, which induces positive excess pore water pressure and leads to Bishop's stress reduction and a drop in strength, is a major factor contributing to this landslide. The entire failure process can be classified into three phases with different failure modes: local slide, global slide, and flow-like slide, closely related to the soil stress path. The computed results closely match the field measurements on various aspects, including the landslide zone, mobilized volume, and runout distance. The parametric studies reveal that the landslide zone, mobilized soil volume, and final runout distance decrease with a lower value of dilation angle and a smaller critical state plastic deviatoric strain. Conversely, in the case of a constant SWRC, there tends to be an overestimation of these parameters. It is therefore important to consider soil contraction and its influence on hydro-mechanical behaviour.
This paper presents a reliability analysis of circular footings on unsaturated soils. Two methods were used to capture the unsaturated soil behavior: implementing two elastoplastic constitutive models, including the Barcelona Basic Model (BBM) and the Sun Model (SM), which are explicitly proposed for unsaturated soils, and incorporating the apparent cohesion in the Mohr-Coulomb Model (MCM). The effect of soil suction on the bearing capacity of circular footings was investigated. It was shown that for low values of suction, the bearing capacities obtained from MCM were higher than those obtained from BBM and SM. However, as suction increased, MCM tended to predict lower bearing capacities. In practice, geotechnical engineers are still concerned with the measurement and determination of suction as a key stress state variable of unsaturated soils. In this context, the Monte Carlo simulation technique has been incorporated into numerical modeling for the investigation of the effect of suction uncertainties on the bearing capacity. Uncertainties associated with the suction value were modeled as normally and log-normally distributed random variables. It was shown that assuming a normal distribution for suction resulted in slightly lower probabilistic bearing capacity values (i.e., more conservative design) compared to the log-normal distributions. The results emphasized the important role of the coefficient of variation (COV) of suction in determining the probabilistic bearing capacity. A negative linear correlation was observed between the COV of suction and the probabilistic bearing capacity. Finally, a simple relationship was proposed to estimate the probabilistic bearing capacity of the circular footing in an unsaturated soil when its deterministic value and the COV of suction are known.
Fault ruptures induced by earthquakes pose a significant threat to constructions, particularly underground structures such as pile foundations. Among various foundation types, batter pile foundations are widely used due to their ability to resist inclined forces. To gain new insights into the response of batter pile groups to fault ruptures caused by earthquakes, this study investigates the deformation and failure mechanisms of batter pile groups due to the propagation of normal and reverse fault ruptures using 3D numerical modeling. An advanced hypoplastic constitutive model for clay, which accounts for small-strain stiffness, and a concrete damage plasticity (CDP) model are employed to simulate the soil and the batter pile foundation, respectively. Results show that following fault propagation, nearly 10% tilting and significant displacement occurred at the pile cap, indicating a total failure of the batter pile foundation. It was also observed that the piles bent towards the slipping direction of the hanging wall. Tensile damage to the pile foundation was notably more severe than compression damage. The most severely damaged regions were not only located at the joints between the piles and the pile caps but were also found along the pile shafts.
Understanding the anchorage of a complex root system architecture (RSA) in soil upon tree overturning is vital to evaluate tree stability under lateral loads. Empirical correlations between root anchorage capacity and root morphological traits have been established, but the role of soil in these correlations has been ignored. This study developed and validated a threedimensional finite element model and then used it to investigate the underlying mechanisms of root-soil load transfer mechanisms in terms of the evolution of soil stress states and root strength mobilisation during overturning. Two root traits--radial distance and embedded depth--influenced root anchorage capacity remarkably. The pattern of soil stress state evolution near taproots and laterals was remarkably different. Roots that displaced in the direction more aligned with the soil's major principal stress were more effective to mobilise their strength to resist against overturning. The failure envelope defined by the normalised peak moment capacity in the x- and y-direction of the asymmetric RSA was elliptic, displaying anisotropic overturning under combined load conditions.