Black carbon (BC) aerosol is a significant and short-lived climate forcing factor. Here, the direct effects of BC emissions from India (IDBC) and China (CNBC) are investigated in East Asia during summer using the state-of-the-art regional climate model RegCM4. In summer, IDBC and CNBC account for approximately 30% and 46% of the total BC emissions in Asia, respectively. The total BC column burden from the two countries and corresponding TOA effective radiative forcing are 1.58 mg m(-2) and +1.87 W m(-2) in East Asia, respectively. The regional air temperature increases over 0.3 K at maximum and precipitation decreases 0.028 mm day(-1) on average. Individually, IDBC and CNBC each can bring about rather different effects on regional climate. IDBC can result in a cooling perturbation accompanied by a substantially increased cloud amount and scattering aerosol loading, resulting in a complex response in the regional precipitation, while CNBC can lead to regional warming, and further induce a local flood in northern China or drought in southern China depending on the opposite but significant circulation anomalies. CNBC plays a dominant role in modulating the regional climate over East Asia due to its higher magnitude, wider coverage, and stronger climate feedback. The direct effect of the total BC from both countries is not a linear combination of that of IDBC and CNBC individually, suggesting that the regional climate responses are highly nonlinear to the emission intensity or aerosol loading, which may be greatly related to the influences of the perturbed atmospheric circulations and climate feedback.
Global warming as quantified by surface air temperature has been shown to be approximately linearly related to cumulative emissions of CO2. Here, a coupled state-of-the-art Earth system model with an interactive carbon cycle (BNU-ESM) was used to investigate whether this proportionality extends to the complex Earth system model and to examine the climate system responses to different emission pathways with a common emission budget of man-made CO2. These new simulations show that, relative to the lower emissions earlier and higher emissions later (LH) scenario, the amount of carbon sequestration by the land and the ocean will be larger and Earth will experience earlier warming of climate under the higher emissions earlier and lower emissions later (HL) scenario. The processes within the atmosphere, land, and cryosphere, which are highly sensitive to climate, show a relatively linear relationship to cumulative CO2 emissions and will attain similar states under both scenarios, mainly because of the negative feedback between the radiative forcing and ocean heat uptake. However, the processes with larger internal inertias depend on both the CO2 emissions scenarios and the emission budget, such as ocean warming and sea level rise.