Mapping accurately vegetation surfaces in space and time in the ice-free areas of Antarctica can provide important information to quantitatively describe the evolution of their ecosystems. Spaceborne remote sensing is the adequate way to map and evaluate multitemporal changes on the Antarctic vegetation at large but its nature of occurrence, in relatively small and sparse patches, makes the identification very challenging. The inclusion of an intermediate scale of observation between ground and satellite scales, provided by Unmanned Aerial Vehicles (UAV) imagery, is of great help not only for their effective classification, but also for discriminating their main communities (lichens and mosses). Thus, this paper quantifies accurately recent changes of the vegetated areas in Fildes Peninsula (King George Island, Antarctica) through a novel methodology based on the integration of multiplatform data (satellite and UAV). It consists of multiscale imagery (spatial resolution of 2 m and 2 cm) from the same period to create a robust classifier that, after intensive calibration, is adequately used in other dates, where field reference data is scarce or not available at all. The methodology is developed and tested with UAV and satellite data from 2017 showing overall accuracies of 96% and kappa equal to 0.94 with a SVM classifier. These high performances allow the extrapolation to a pair of previous dates, 2006 and 2013, when atmospherically clear very high-resolution satellite imagery are available. The classification allows verifying a loss of the total area of vegetation of 4.5% during the 11-year time period under analysis, which corresponds to a 10.3% reduction for Usnea sp. and 9.8% for moss formations. Nevertheless, the breakdown analysis by time period shows a distinct behaviour for each vegetation type which are evaluated and discussed, namely for Usnea sp. whose decline is likely to be related to changing snow conditions. (C) 2019 Elsevier B.V. All rights reserved.
2020-02-20 Web of ScienceLong-term fine-scale dynamics of surface hydrology in Arctic tundra ponds (less than 1ha) are largely unknown; however, these small water bodies may contribute substantially to carbon fluxes, energy balance, and biodiversity in the Arctic system. Change in pond area and abundance across the upper Barrow Peninsula, Alaska, was assessed by comparing historic aerial imagery (1948) and modern submeter resolution satellite imagery (2002, 2008, and 2010). This was complemented by photogrammetric analysis of low-altitude kite-borne imagery in combination with field observations (2010-2013) of pond water and thaw depth transects in seven ponds of the International Biological Program historic research site. Over 2800 ponds in 22 drained thaw lake basins (DTLB) with different geological ages were analyzed. We observed a net decrease of 30.3% in area and 17.1% in number of ponds over the 62year period. The inclusion of field observations of pond areas in 1972 from a historic research site confirms the linear downward trend in area. Pond area and number were dependent on the age of DTLB; however, changes through time were independent of DTLB age, with potential long-term implications for the hypothesized geomorphologic landscape succession of the thaw lake cycle. These losses were coincident with increases in air temperature, active layer, and density and cover of aquatic emergent plants in ponds. Increased evaporation due to warmer and longer summers, permafrost degradation, and transpiration from encroaching aquatic emergent macrophytes are likely the factors contributing to the decline in surface area and number of ponds.
2015-03-01 Web of Science