The optical properties of secondary brown carbon (BrC) aerosols are poorly understood, hampering quantitative assessments of their impact. We propose a new method for estimating secondary source of BrC using excitation-emission matrix (EEM) fluorescence spectroscopy, combined with parallel factor analysis (PARAFAC) and partial least squares regression (PLSR). Experiments were conducted on a collection of PM2.5 samples from urban areas in five Chinese cities during winter and summer. The humic-like component with long-emission wavelengths (L-HULIS) was identified as a secondary source tracer of BrC. This was confirmed by correlating PARAFAC components with secondary organic aerosol tracers and molecular oxidation indices obtained from Fourier transform ion cyclotron resonance mass spectrometry analysis. Using L-HULIS as a secondary tracer of BrC, it was determined that the contribution of secondary sources to water-soluble BrC (WS-BrC) in source emission samples is significantly smaller than in PM2.5 from five Chinese cities, supporting our method. In the five cities, secondary source derived via L-HULIS contributes a dominant potion (80% +/- 3.5%) of WS-BrC at 365 nm during the summer, which is approximately twice as high as during the winter (45% +/- 4.9%). Radiocarbon isotope (14C) analysis provides additional constraints to the sources of L-HULIS-derived secondary WS-BrC in urban PM2.5, suggesting that aged biomass burning is the dominant contributor to secondary WS-BrC in winter, and biogenic emission is dominant during summer. This study is the first report on identification of secondary sources of BrC using the fluorescence technique. It demonstrates the potential of this method in characterizing non-fossil source secondary BrC in the atmosphere. Brown carbon (BrC) originates from primary combustion emissions and secondary formation, with large source-dependent uncertainties of radiative forcing. Direct measurements to separate the primary and secondary BrC are challenging due to the chemical complexity. Recent online studies have shown that excitation-emission matrix fluorescence spectroscopy coupled with parallel factor (PARAFAC) analysis identified some fluorescent components that may be linked to secondary sources. However, there is a knowledge gap on whether PARAFAC components correlate closely with atmospheric secondary chemical components, particularly biogenic and anthropogenic secondary organic aerosol, as their precursors can also form secondary BrC chromophores. We established the correlations between PARAFAC components and secondary organic aerosol tracers and compound oxidations to identify the long-emission-wavelength humic-like component as a secondary source tracer of BrC. Then, we estimated non-fossil source secondary BrC in urban aerosols during the winter and summer. Our studies provide references for quantifying secondary sources of BrC in the atmosphere. A fluorescence-based method was developed to investigate secondary sources of water-soluble brown carbon in five cities in China The contribution of secondary sources to water-soluble brown carbon in the summer is approximately twice as high as during the winter This secondary water-soluble brown carbon was more associated with aging biomass burning in winter and biogenic emissions in summer
Shortcomings and uncertainties in the model representation of atmospheric transformations (the aging) of organic aerosol (OA) have long been identified as one of the potential sources of considerable uncertainty in OA simulations with both global and regional models. However, the impact of this uncertainty on predictions of radiative and climate effects of both anthropogenic and biomass burning (BB) aerosol yet needs to be understood. This study examines the importance of the model representation of OA for simulating the direct radiative effect (DRE) of Siberian BB aerosol in the eastern Arctic. We employ a regional coupled chemistry-meteorology model and a global fire emission database to simulate the optical properties and DRE of BB aerosol emitted from intense Siberian fires in July 2016 and compare the DRE estimates that were obtained using two alternative representations of Siberian BB OA. One of them is a default OA representation that predicts very little secondary OA (SOA), and another involves a simple original OA parameterization that has been developed previously within the volatility basis set (VBS) framework and features a strong production of SOA. The simulations of the aerosol optical properties are evaluated against satellite observations of the aerosol optical depth (AOD) in Siberia and the Arctic as well as against values of the single scattering albedo derived from in situ observations of the aerosol absorption and scattering coefficients at four Arctic sites. While the simulations with the default OA representation are found to strongly underestimate AOD both in Siberia and the eastern Arctic, the use of the VBS parameterization considerably improves the agreement between the AOD simulations and observations in both regions. Simulations of the single scattering albedo are found to be overall rather adequate with both representations. Differences in the OA representations are found to result in major differences in the estimates of the DRE of Siberian BB aerosol in the eastern Arctic. Specifically, although the simulations with both representations predict that the DRE is predominantly negative at the top of the atmosphere (TOA), the magnitude of the mean DRE is found to be more than twice as large (6.0 W m-2) with the VBS parameterization than with the default OA representation (2.8 W m-2). An even larger difference (by a factor of 3.5) is found between the estimates of the DRE over the snow-or ice-covered areas. The different treatments of the BB OA evolution are associated also with considerably different contributions of black and brown carbon to the DRE estimates. Overall, our results indicate that model estimates of the DRE of Siberian BB aerosol in the eastern Arctic are strongly sensitive to the assumptions regarding the evolution of OA in Siberian BB plumes and that the SOA formation in these plumes is one of the major factors determining the magnitude of the radiative effects of Siberian BB aerosol in the real atmosphere.
By quantifying the absorption of black carbon (BC), brown carbon (BrC) and the lensing effect, we found that BrC dominates the total absorption at 450 nm, and the largest absorption contribution proportion of BrC could reach 78.3% during heavy pollution. The average absorption enhancement (E-abs) at 530 nm was only 1.38, indicating that BC is not coated well here. The average value of the absorption Angstrom exponent (AAE) between 450 nm and 530 nm was 5.3, suggesting a high concentration of BrC in Wangdu. CHN+ was the greatest contributor to the light absorption of molecules detected in MSOC with a proportion of 12.2-22.4%, in which the polycyclic aromatic nitrogen heterocycles (PANHs) were the dominant compounds. The C6H5NO3 and its homologous series accounted for 3.0-11.3%, and the C15H9N and its homologous series, including one C16H11N and three C17H13N compounds, accounted for 5.1-12.3%. The absorption of these PANHs is comparable to that of nitro-aromatics, which should attract more attention to the impact of climate radiative forcing.
The mixing of black carbon (BC) with secondary materials is a major uncertainty source in assessing its radiative forcing. However, current understanding of the formation and evolution of various BC components is limited, particularly in the Pearl River Delta, China. This study measured submicron BC-associated nonrefractory ma-terials and the total submicron nonrefractory materials using a soot particle aerosol mass spectrometer and a high-resolution time-of-flight aerosol mass spectrometer, respectively, at a coastal site in Shenzhen, China. Two distinct atmospheric conditions were also identified to further explore the distinctive evolution of BC-associated components: polluted period (PP) and clean period (CP). Comparing the components of two particles, we found that more-oxidized organic factor (MO-OOA) prefers to form on BC during PP rather CP. The formation of MO-OOA on BC (MO-OOABC) was affected by both enhanced photochemical processes and nocturnal heterogeneous processes. Enhanced photo-reactivity of BC, photochemistry during the daytime, and heterogeneous reaction at nighttime were potential pathways for MO-OOABC formation during PP. The fresh BC surface was favorable for the formation of MO-OOABC. Our study shows the evolution of BC-associated components under different at-mospheric conditions, which should be considered in regional climate models to improve the assessment of the climate effects of BC.
This study inspects the concentrations of fine particulate matter (PM2.5) mass and carbonaceous species, including organic carbon (OC) and elemental carbon (EC), as well as their thermal fractions in the Indian Himalayan glacier region at the western Himalayan region (WHR; Thajiwas glacier, 2799 m asl), central Himalayan region (CHR; Gomukh glacier, 3415 m asl), and eastern Himalayan region (EHR; Zemu glacier, 2700 m asl) sites, throughout the summer and winter periods of 2019-2020. Ambient PM2.5 samples were collected on quartz fiber filters using a low-volume sampler, followed by carbon (OC and EC) quantification using the IMPROVE_A thermal/optical reflectance methodology. Different seasonal variations in PM2.5 and carbonaceous species levels were found at all three sites investigated. Averaged PM2.5 mass ranged 55-87 mu g m-3 with a mean of 55.45 +/- 16.30 mu g m-3 at WHR, 86.80 +/- 35.73 mu g m-3 at CHR, and 72.61 +/- 24.45 mu g m-3 at EHR. Among the eight carbon fractions, high-temperature OC4 (evolved at 580 degrees C in the helium atmosphere) was the most prevalent carbon fraction, followed by low-temperature OC2 (280 degrees C) and EC1 (580 degrees C at 2% oxygen and 98% helium). Char-EC representing incomplete combustion contributed to 56, 67, and 53% of total EC, whereas soot EC contributed to 38, 26, and 43% of total EC in WHR, CHR, and EHR, respectively. The measured OC/EC ratios imply the presence of secondary organic carbon, whereas char-EC/soot-EC ratios suggested that biomass burning could be the predominant source of carbon at CHR, whereas coal combustion and vehicular emission might be dominant sources at WHR and EHR sites.
Polycyclic aromatic hydrocarbons (PAHs) and their oxygenated (OPAHs) and nitrated (NPAHs) derivatives are main chromophores of the carbonaceous aerosol brown carbon (BrC), which is linked with radiative forcing. Here, we investigated the atmospheric absorption spectra of 64 PAHs, OPAHs, and NPAHs directly over the Chinese megacity of Xi'an, by employing a time-dependent density functional theory (TD-DFT) computational approach and correcting the results for the experimentally determined atmospheric concentration of the studied molecules. The obtained data showed that these molecules contribute more to radiative forcing by absorbing light in the UVA and (sub)visible region of the spectrum. Investigating daily absorption spectra revealed major seasonal variation in the intensity of light absorption, but little changes in the shape of the absorption spectra. The observed light absorption can be explained mainly by contributions from PAHs and to a lesser extent by carbonyl-OPAHs, with relatively low contributions of the other OPAHs and NPAHs. Among them, benzo[b+j+k] fluoranthenes, benzo[e]pyrene, benzo[a]pyrene, benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, 6H-benzo[cd] pyren-6-one, 7H-benz[de]anthracen-7-one, and benz[a]anthracene-7,12-dione are highlighted as potentially problematic contributors for radiative forcing over Xi'an.
Brown carbon is a type of strong light-absorbing carbonaceous aerosol associated with radiative forcing. Nevertheless, the difficulty in correlating the chemical composition of brown carbon with its light absorption properties impairs the proper elucidation of its role in radiative forcing. Here, we have used a time-dependent density functional theory (TD-DFT)-based procedure to revisit the real-world absorption spectra of polycyclic aromatic hydrocarbons (PAHs) over the city of Porto, in Portugal, while correcting the spectra for their quantity in PM10 particulate matter. Our aim is to, by comparing these new results with those obtained previously regarding PM2.5 data, evaluate the role of different groupings of particulate matter in the light absorption of brown carbon. The results indicate that irrespective of the absorption spectra corresponding to their PM10 or PM2.5 data, the studied PAHs should contribute to radiative forcing by light absorption at UVA and (sub)visible wavelengths. However, the identity of the individual PAH species that contribute the most for the considered wavelengths can be quite different. Thus, different groupings of particulate matter appear to provide distinct contributions to light absorption and radiative forcing over the same location, even when considering the same class of molecular compounds.
In order to reduce uncertainties in estimation of aerosol radiative forcing, multi-parameter field observational studies are crucial. In this study, alterations of single scattering albedo (SSA), aerosol chemical composition, microphysical and optical characteristics (aerosol light scattering and absorption coefficients, absorption and scattering Angstrom exponents, symmetry parameter, aging, size, aerosol liquid water content and other) were analyzed during residential heating season (from 10th October to 1st November 2014) in urban environment in Lithuania. In addition, a high concentration event was observed. High resolution and complex field measurements enabled evaluation of different aerosol parameters as drivers of SSA alterations under increased pollution levels. During the event, an evident input of not photochemically aged and small particles was observed together with increased levels of both black and brown car-bon (BC and BrC, respectively). It was found that mainly PM1/BC ratio had the highest influence on SSA values. At the beginning of the event due to increased levels of light scattering particles, SSA remained unchanged (0.95). Meantime at the second half of the event scavenging of these particles and emissions of light absorbing primary aerosol resulted in SSA decreased to 0.86. (C) 2022 Elsevier Ltd. All rights reserved.
We present the first box model simulation results aimed at identification of possible effects of the atmospheric photochemical evolution of the organic component of biomass burning (BB) aerosol on the aerosol radiative forcing (ARF) and its efficiency (ARFE). The simulations of the dynamics of the optical characteristics of the organic aerosol (OA) were performed using a simple parameterization developed within the volatility basis set framework and adapted to simulate the multiday BB aerosol evolution in idealized isolated smoke plumes from Siberian fires (without dilution). Our results indicate that the aerosol optical depth can be used as a good proxy for studying the effect of the OA evolution on the ARF, but variations in the scattering and absorbing properties of BB aerosol can also affect its radiative effects, as evidenced by variations in the ARFE. Changes in the single scattering albedo (SSA) and asymmetry factor, which occur as a result of the BB OA photochemical evolution, may either reduce or enhance the ARFE as a result of their competing effects, depending on the initial concentration OA, the ratio of black carbon to OA mass concentrations and the aerosol photochemical age in a complex way. Our simulation results also reveal that (1) the ARFE at the top of the atmosphere is not significantly affected by the OA oxidation processes compared to the ARFE at the bottom of the atmosphere, and (2) the dependence of ARFE in the atmospheric column and on the BB aerosol photochemical ages almost mirrors the corresponding dependence of SSA.
Brown carbon is a type of carbonaceous aerosol with strong light absorption in the ultraviolet and visible wavelengths that leads to radiative forcing. However, it is difficult to correlate the chemical composition of brown carbon with its atmospheric light absorption properties, which translates into significant uncertainty. Thus, a time-dependent density functional theory (TD-DFT) approach was used to model the real-world absorption properties of 14 polycyclic aromatic hydrocarbons (PAHs) over three regions of the Basque Country (Spain): Bilbao, Urretxu, and Azpeitia. The data were corrected for atmospheric concentration. The results show that the absorption spectra over each region are qualitatively identical, with the absorption intensities being significantly higher over Bilbao than over Azpeitia and Urretxu. Furthermore, it was found that the light absorption by PAHs should be more relevant for radiative forcing when it occurs at UVA and (sub)visible wavelengths. Finally, among the 14 studied PAHs, benzo[b]fluoranthene, pyrene, fluoranthene, benzo[a]pyrene, and benzo[k]fluoranthene and benzoperylene were identified as the molecules with larger contributions to radiative forcing.