Understanding soil organic carbon (SOC) distribution and its environmental controls in permafrost regions is essential for achieving carbon neutrality and mitigating climate change. This study examines the spatial pattern of SOC and its drivers in the Headwater Area of the Yellow River (HAYR), northeastern Qinghai-Xizang Plateau (QXP), a region highly susceptible to permafrost degradation. Field investigations at topsoils of 86 sites over three summers (2021-2023) provided data on SOC, vegetation structure, and soil properties. Moreover, the spatial distribution of key permafrost parameters was simulated: temperature at the top of permafrost (TTOP), active layer thickness (ALT), and maximum seasonal freezing depth (MSFD) using the TTOP model and Stefan Equation. Results reveal a distinct latitudinal SOC gradient (high south, low north), primarily mediated by vegetation structure, soil properties, and permafrost parameters. Vegetation coverage and above-ground biomass showed positive correlation with SOC, while soil bulk density (SBD) exhibited a negative correlation. Climate warming trends resulted in increased ALT and TTOP. Random Forest analysis identified SBD as the most important predictor of SOC variability, which explains 38.20% of the variance, followed by ALT and vegetation coverage. These findings likely enhance the understanding of carbon storage controls in vulnerable alpine permafrost ecosystems and provide insights to mitigate carbon release under climate change.
Uncertainties in carbon storage estimates for disturbance-prone dryland ecosystems hinder accurate assessments of their contribution to the global carbon budget. This study examines the effects of land-use change on carbon storage in an African savanna landscape, focusing on two major land-use change pathways: agricultural intensification and wildlife conservation, both of which alter disturbance regimes. By adapting tree inventory and soil sampling methods for dryland conditions, we quantified aboveground and belowground carbon in woody vegetation (AGC and BGC) and soil organic carbon (SOC) across these pathways in two vegetation types (scrub savanna and woodland savanna). We used Generalized Additive Mixed Models to assess the effects of multiple environmental drivers on AGC and whole-ecosystem carbon storage (C-total). Our findings revealed a pronounced variation in the vulnerability of carbon reservoirs to disturbance, depending on land-use change pathway and vegetation type. In scrub savanna vegetation, shrub AGC emerged as the most vulnerable carbon reservoir, declining on average by 56% along the conservation pathway and 90% along the intensification pathway compared to low-disturbance sites. In woodland savanna, tree AGC was most affected, decreasing on average by 95% along the intensification pathway. Unexpectedly, SOC stocks were often higher at greater disturbance levels, particularly under agricultural intensification, likely due to the preferential conversion of naturally carbon-richer soils for agriculture and the redistribution of AGC to SOC through megaherbivore browsing. Strong unimodal relationships between disturbance agents, such as megaherbivore browsing and woodcutting, and both AGC and C-total suggest that intermediate disturbance levels can enhance ecosystem-level carbon storage in disturbance-prone dryland ecosystems. These findings underline the importance of locally tailored management strategies-such as in carbon certification schemes-that reconcile disturbance regimes in drylands with carbon sequestration goals. Moreover, potential trade-offs between land-use objectives and carbon storage goals must be considered.
Mucilage offers several beneficial functions for soils, yet its impact on soil mechanical behavior remains underexplored. This study investigated the effects of chia seed mucilage on the plasticity index (under normal conditions) and penetration resistance (under compaction) of sandy clay loam soils with differing soil organic carbon (SOC) levels from Akhtar Abad (SOC = 1.6%) and Najm Abad (SOC = 0.6%) in northern Iran. Four mucilage concentrations (0, 1 g kg-1, 3 g kg-1, 5 g kg-1) and three compaction pressures (100 kPa, 300 kPa, 600 kPa) were used. We found that mucilage significantly increased the plasticity index, with a 5.8% increase at 1 g kg-1 in the Najm Abad soil and 2.6%-3% increases at higher concentrations in the Akhtar Abad soil. At a concentration of 3 g kg-1, soil penetration resistance in the Akhtar Abad soil increased by 0.9 MPa and 1.6 MPa at compaction pressures of 300 kPa and 600 kPa, respectively. In the Najm Abad soil, a concentration of 5 g kg-1 led to increases of 0.7 MPa and 1.7 MPa at compaction pressures of 300 kPa and 600 kPa, respectively. No significant relationship was found between soil penetration resistance and soil plasticity index. The mucilage-induced increase in soil plasticity may hinder soil workability, especially when tillage occurs immediately after crop harvest. Mucilage can also increase soil resistance to root penetration in areas compacted by heavy machinery. To mitigate these risks, we recommend performing tillage and machinery operations in both agricultural and forest ecosystems during dry periods, when mucilage is less active, to minimize its negative impact on soil workability and compaction.
The economic benefits of rice-wheat (RW) and rice-oilseed rape (RO) rotation in China are low. By contrast, the rice-edible mushroom Stropharia rugosoannulata (RE) rotation yields significantly higher economic benefits than RW and RO rotations. Furthermore, RE rotation can avoid air pollution caused by rice straw burning and has been widely adopted in China. Nevertheless, it remains unclear how the rotation affects CH4 and N2O emissions and global warming potential. Herein, three rice-based rotations, including RW, RO and RE rotations, were conducted in central China. The RE rotation resulted in the lowest CH4 emission from the winter crop season as well as the lowest annual N2O emission from the rice seasons among the three rotations. Moreover, compared with the RW and RO rotations, the RE rotation significantly increased the soil organic carbon content by 30.2 % and 31.2 %, and the rice yield by 16.0 % and 17.0 %, respectively. Hence, the RE rotation significantly reduced the net global warming potential by 2008.4 % and 696.5 % compared with the RW and RO rotations, respectively. Furthermore, the RE rotation improved soil fertility compared with the other two rotations. Although the RE rotation required the highest agricultural input among the three rotations, it contributed to the highest net ecosystem economic profits owing to its highest agricultural income and lowest environmental damage cost. Thus, RE rotation is an effective rice-based rotation that can use rice straws to reduce the net global warming potential and increase economic benefits and soil fertility. Therefore, RE rotation may serve as an alternative strategy for achieving sustainable agricultural production in winter fallow areas of the rice-upland region in Yangtze River Basin, China.
Straw return is widely acknowledged as a crucial strategy for enhancing soil fertility and increasing crop yields. However, the continuous addition of straw, its slow decomposition, and retention can hinder crop growth. Therefore, it is essential to elucidate the characteristics of the crop straw decomposition. This study aims to explore the alterations in straw decomposition rates, as well as the content and structure of organic components, under the combined application of swine manure and corn straw in the broken skin yellow soil of black soil over time. The findings revealed that the straw decomposition rates in all treatments increased rapidly in the early stage, gradually slowed down and stabilized in the later stage. The decomposition rates of cellulose and hemicellulose were generally consistent with those of straw, while lignin decomposed more rapidly in the middle and later stages. Notably, the decomposition rate of straw and its components was significantly higher under the combined application of swine manure and biochar compared to other treatments, with decomposition rates of straw, cellulose, hemicellulose, and lignin recorded at: 66.16%, 63.38%, 61.16% and 47.96%, respectively, after 360 days. This treatment exhibited the most substantial damage to the apparent structure of corn straw over time, and it resulted in lower C/N ratios and the most pronounced decrease in the intensity of absorption peaks. Among all the treatments, the alkyl carbon/alkoxy carbon ratio was highest in the SCZ treatment, indicating that the addition of swine manure and biochar can significantly enhance straw decomposition. Correlation analysis revealed that the decomposition rates of straw, cellulose, hemicellulose, and lignin were significantly and positively correlated with the rates of alkyl carbon, aromatic carbon, and phenolic carbon in the organic functional groups of straw residues, and significantly negatively correlated with alkoxy carbon. The study suggested that the combined application of straw, swine manure and biochar in the field can effectively promote the decomposition of corn straw. Our findings provided insights into the efficient utilization of various exogenous conditioners, serving as a scientific basis for accelerating straw decomposition and enhancing nutrient utilization.
Iron (Fe) minerals possess a huge specific surface area and high adsorption affinity, usually considered as rust tanks of organic carbon (OC), playing an important role in global carbon storage. Microorganisms can change the chemical form of Fe by producing Fe-chelating agents such as side chains and form a stable complex with Fe(III), which makes it easier for microorganisms to use. However, in seasonal frozen soil thawing, the succession of soil Fe-cycling microbial communities and their coupling relationship with Fe oxides and Fe-bound organic carbon (Fe-OC) remains unclear. We characterized changes in the Fe phase, Fe-OC, Fe-oxidizing bacteria (FeOB), and Fe-reducing bacteria (FeRB) in the subsoil and analyzed the microbial mechanism underlying Fe-OC changes in alpine grassland by constructing a composite structural equation model (SEM). We found that the Fe(III) content consistently exceeded that of Fe(II). Among the three types of Fe oxides, organically complex Fe (Fe-p) decreased from 2.54 to 2.30 gkg(-1), whereas the opposite trend was observed for poorly crystalline Fe (Fe-o). The Fe-OC content also decreased (from 10.31 to 9.47 gkg(-1); p < 0.05). Fe-cycling microorganisms were markedly affected by the thawing of frozen soil (except FeRB). Fe-p and Feo directly affected changes in Fe-OC. Soil moisture (SM) and FeOB were significant indirect factors affecting Fe-OC changes. Freeze-thaw changes in the subsoil of alpine grassland in Central Asia significantly affected FeOB and Fe oxides, thus affecting the Fe-OC content. To the best of our knowledge, this was the first study to examine the influence of Fe-cycling microorganisms on the Fe phase and Fe-OC in the soil of alpine grassland in Central Asia. Overall, our findings provide scientific clues for exploring the biogeochemical cycle process in future climate change.
Alpine grassland ecosystems play a crucial role in the global carbon (C) balance by contributing to the soil organic carbon (SOC) pool; thus, quantifying SOC stocks in these ecosystems is essential for understanding potential gains or losses in soil C under the threat of climate change and anthropogenic activities. Remote sensing plays a vital role in estimating SOC stocks; however, identifying reliable remote sensing proxies to enhance SOC prediction remains a challenge. Information on soil C cycling proxies can reveal how the balance between C inputs and outputs affects SOC. Therefore, these proxies could be effective indicators of SOC variations. In this study, we explored the potential of satellite-derived attributes related to soil C cycling proxies for predicting SOC stocks. We derived remote sensing indices such as gross primary production, soil respiration, soil moisture, land surface temperature, radiation, and soil disturbance and assessed the relationships between these indices and SOC stocks via partial least squares structural equation modeling (PLS-SEM). We evaluated the effectiveness of these indices in predicting SOC stocks, we compared PLS-SEM and quantile regression forest (QRF) models across different variable combinations, including static, intra-annual, and inter-annual information. The PLS-SEM results demonstrated the suitability of the derived remote sensing indices and their interactions in reflecting processes related to soil C balance. The QRF models, using these indices, achieved promising prediction accuracies, with a coefficient of determination (R2) of 0.54 and a root mean square error (RMSE) of 0.79 kg m-2 at the topmost 10 cm of soil. However, the prediction performance generally decreased with increasing soil depth, up to 30 cm. The results also revealed that adding intra- and inter-annual information to remotely sensed proxies did not increase the prediction accuracy. Our study revealed that gross primary production, soil respiration, soil moisture, land surface temperature, radiation, and soil disturbance are effective proxies for representing factors influencing soil C balance and mapping SOC stocks in alpine grasslands.
Elemental carbon (EC), also known as black carbon, plays an important role in climate change. Accurately assessing EC concentration in aerosols remains challenging due to the overestimations caused by carbonates and organic carbon (OC) during thermal-optical measurement in the Tibetan Plateau (TP). This study evaluates the extent of EC overestimated by carbonates and OC at four remote sites (Nyalamu, Lulang, Everest and Ngari) in southern and western of the TP using different treatments. The average overestimation of EC concentration due to acid treatment was consistent across all sites (25.5 f 2.4 %). After correction, the proportion of EC overestimated by carbonates were approximately 8.5 f 7.3 %, 12.3 f 6.9 %, 18.1 f 11.8 % and 22.7 f 13.3 %, respectively, revealing an increasing trend from humid to arid regions. Methanol-soluble OC (MSOC) concentrations were significantly correlated with the reduction of EC concentrations, indicating that the methanol extraction effectively mitigates EC overestimation. Seasonal variation of carbonaceous aerosol concentrations was significantly affected by sources from South Asia. Despite the variations in climate and aerosol sources, the average overestimations of measured EC concentration by carbonates and OC were similar at Nyalamu (49.4 f 14.0 %), Lulang (47.8 f 8.4 %), Everest (48.7 f 15.9 %) and Ngari (49.3 f 13.7 %) sites. Therefore, the actual EC concentrations were only about 51.2 f 13.1 % of the original values. This estimation will significantly enhance the contribution of brown carbon (BrC) to radiative forcing relative to EC, highlighting a critical area for future research. Investigating the actual concentrations of EC in the TP provides critical data to support model simulation and validate model accuracy, further enhancing our understanding of EC's impacts on climate warming and glacier melting.
Frequent soil drying and wetting cycles significantly affect the mineralization processes of soil organic carbon (SOC) and total nitrogen (STN), impacting soil quality and contributing to nutrient loss. However, the effects of these dry-wet cycles on SOC and STN mineralization in dam soil are not well understood. This study simulated four consecutive wet-dry cycles under five soil moisture gradients of 0% (CK), 5%, 10%, 15%, and 100%, and 100%, across four cycles of 7, 14, 21, and 28 days, to investigate the effects on soil aggregates, enzyme activities, and the mineralization of SOC and STN. The results indicated that soil enzyme activity peaked after two dry-wet cycles and then began to decline. The dry-wet cycles reduced the proportion of soil macro-aggregates while also decreasing the proportions of small and micro-aggregates. In contrast, the 100% treatment conditions exhibited the opposite effect. Dry-wet cycles enhanced the mineralization rates of SOC and STN, with the average mineralization rates under the 10% soil moisture content being the highest-1.78 and 2.38 times greater than the CK treatment for SOC and STN, respectively. The impact of dry-wet cycles on SOC and STN mineralization through the enzyme pathway was greater than through the aggregate pathway. These research findings provide theoretical insights and scientific references for the efficient operation and ecological protection of sedimentation dams in the Loess Plateau.
The abrupt warming events punctuating the Termination 1 (about 11.7-18 ka Before Present, BP) were marked by sharp rises in the concentration of atmospheric methane (CH4). The role of permafrost organic carbon (OC) in these rises is still debated, with studies based on top-down measurements of radiocarbon (14C) content of CH(4 )trapped in ice cores suggesting minimum contributions from old and strongly C-14-depleted permafrost OC. However, organic matter from permafrost can exhibit a continuum of C-14 ages (contemporaneous to >50 ky). Here, we investigate the large-scale permafrost remobilization at the Younger Dryas-Preboreal transition (ca. 11.6 ka BP) using the sedimentary record deposited at the Lena River paleo-outlet (Arctic Ocean) to reflect permafrost destabilization in this vast drainage basin. Terrestrial OC was isolated from sediments and characterized geochemically measuring delta C-13, Delta C-14, and lignin phenol molecular fossils. Results indicate massive remobilization of relatively young (about 2,600 years) permafrost OC from inland Siberia after abrupt warming triggered severe active layer deepening. Methane emissions from this young fraction of permafrost OC contributed to the deglacial CH4 rise. This study stresses that underestimating permafrost complexities may affect our comprehension of the deglacial permafrost OC-climate feedback and helps understand how modern permafrost systems may react to rapid warming events, including enhanced CH4 emissions that would amplify anthropogenic climate change.