Lakes are commonly accepted as a sensitive indicator of regional climate change, including the Tibetan Plateau (TP). This study took the Ranwu Lake, located in the southeastern TP, as the research object to investigate the relationship between the lake and regional hydroclimatological regimes. The well-known Budyko framework was utilized to explore the relationship and its causes. The results showed air temperature, evapotranspiration and potential evapotranspiration in the Ranwu Lake Basin generally increased, while precipitation, soil moisture, and glacier area decreased. The Budyko space indicated that the basin experienced an obviously drying phase first, and then a slightly wetting phase. An overall increase in lake area appears inconsistent with the drying phase of the basin climate. The inconsistency is attributable to the significant expansion of proglacial lakes due to glacial melting, possibly driven by the Atlantic Multidecadal Oscillation. Our findings should be helpful for understanding the complicated relationships between lakes and climate, and beneficial to water resources management under changing climates, especially in glacier basins.
Glaciers playa vital role in providing water resources for drinking, agriculture, and hydro-electricity in many mountainous regions. As global warming progresses, accurately reconstructing long-term glacier mass changes and comprehending their intricate dynamic relationships with environmental variables are imperative for sustaining livelihoods in these regions. This paper presents the use of eXplainable Machine Learning (XML) models with GRACE and GRACE-FO data to reconstruct long-term monthly glacier mass changes in the Upper Yukon Watershed (UYW), Canada. We utilized the H2O-AutoML regression tools to identify the best performing Machine Learning (ML) model for filling missing data and predicting glacier mass changes from hydroclimatic data. The most accurate predictive model in this study, the Gradient Boosting Machine, coupled with explanatory methods based on SHapley Additive eXplanation (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) analyses, led to automated XML models. The XML unveiled and ranked key predictors of glacier mass changes in the UYW, indicating a decrease since 2014. Analysis showed decreases in snow water equivalent, soil moisture storage, and albedo, along with increases in rainfall flux and air temperature were the main drivers of glacier mass loss. A probabilistic analysis hinging on these drivers suggested that the influence of the key hydrological features is more critical than the key meteorological features. Examination of climatic oscillations showed that high positive anomalies in sea surface temperature are correlated with rapid depletion in glacier mass and soil moisture, as identified by XML. Integrating H2OAutoML with SHAP and LIME not only achieved high prediction accuracy but also enhanced the explainability of the underlying hydroclimatic processes of glacier mass change reconstruction from GRACE and GRACE-FO data in the UYW. This automated XML framework is applicable globally, contingent upon sufficient high-quality data for model training and validation.
Lakes are known as sentinels of climate change, but their responses may differ from one to another leading to different strategies in lake protection. It is particularly the case in the Tibetan Plateau (TP) of multiple hydrological processes. We employed the Budyko framework to study Tibetan lakes from two lake-basins of contrasting climates for the period between 1980 and 2022: Taro Co Basin (TCB) in a sub-arid climate, and Ranwu Lake Basin (RLB) in a sub-humid climate. Our results showed that total lake area, surface air temperature, evapotranspiration, and potential evapotranspiration increased in both lake-basins, while precipitation and soil moisture increased in the TCB but decreased in the RLB. In the Budyko space, two basins had contrast hydroclimatic trajectories in terms of aridity and evaporative index. The TCB shifted from wetting to drying trend, while the RLB from drying to wetting in early 2000s. Notably, lake change was generally consistent with the drying/wetting phases in the TCB, but in contrast with that in the RLB, which can be attributed to warming- induced glacier melting. Despite of significant correlation with the large-scale atmospheric oscillations, it turned to be more plausible if lake area changes were substituted with basin's hydroclimatic trajectories. Among the large-scale oscillations, El Nino-Southern o-Southern Oscillation (ENSO) is the most dominant control of lake trends and their drying/wetting shifts. Our findings offer a valuable insight into lake responses to climate change in the TP and other regions.
The decreasing trend in rainfall in the last few decades over the Indo-Gangetic Plains of northern India as observed in ground-based observations puts increasing stress on groundwater because irrigation uses up to 70% of freshwater resources. In this work, we have analyzed the effects of extensive irrigation over the Gangetic Plains on the seasonal mean and intra-seasonal variability of the Indian summer monsoon, using a general circulation model and a very high-resolution soil moisture dataset created using extensive field observations in a state-of-the-art hydrological model. We find that the winter-time (November-March) irrigation has a positive feedback on the Indian summer monsoon through large scale circulation changes. These changes are analogous to a positive North Atlantic Oscillation (NAO) phase during winter months. The effects of the positive NAO phase persist from winter to spring through widespread changes in surface conditions over western and central Asia, which makes the pre-monsoon conditions suitable for a subsequent good monsoon over India. Winter-time irrigation also resulted in a reduction of low frequency intra-seasonal variability over the Indian region during the monsoon season. However, when irrigation is practiced throughout the year, a decrease in June-September precipitation over the Gangetic Plains, significant at 95% level, is noted as compared to the no-irrigation scenario. This decrease is attributed to the increase in local soil moisture due to irrigation, which results in a southward shift of the moisture convergence zone during the active phase of monsoon, decreasing its mean and intraseasonal variability. Interestingly, these changes show a remarkable similarity to the long-term trend in observed rainfall spatial pattern and low-frequency variability. Our results suggest that with a decline in the mean summer precipitation and stressed groundwater resources in the Gangetic Plains, the water crisis could exacerbate, with irrigation having a weakening effect on the regional monsoon.
Increasing global warming has led to the incremental retreat of glaciers, which in turn affects the water supply of the rivers dependent on glacier melts. This is further affected by the increases in flooding that is attributable to heavy rains during the snowmelt season. An accurate estimation of streamflow is important for water resources planning and management. Therefore, this paper focuses on improving the streamflow forecast for Kaidu River Basin, situated at the north fringe of Yanqi basin on the south slope of the Tianshan Mountains in Xinjiang, China. The interannual and decadal scale oceanic-atmospheric oscillations, i.e.,Pacific decadal oscillation (PDO), North Atlantic oscillation (NAO), Atlantic multidecadal oscillation (AMO), and El Nino-southern oscillation (ENSO), are used to generate streamflow volumes for the peak season (April-October) and the water year, which is from October of the previous year to September of the current year for a period from 1955-2006. A data-driven model, least-square support vector machine (LSSVM), was developed that incorporated oceanic atmospheric oscillations to increase the streamflow lead time. Based on performance measures, predicted streamflow volumes are in agreement with the measured volumes. Sensitivity analyses, performed to evaluate the effect of individual and coupled oscillations, revealed a stronger presence of coupled PDO, NAO, and ENSO indices within the basin. The AMO index shows a pronounced effect when individually compared with the other oscillation modes. Additionally, model-forecasted streamflow is better than that for climatology. Overall, very good streamflow predictions are obtained using the SVM modeling approach. Furthermore, the LSSVM streamflow predictions outperform the predictions obtained from the most widely used feed-forward back-propagation models, artificial neural network, and multiple linear regression. The current paper contributes in improving the streamflow forecast lead time, and identified a coupled climate signal within the basin. The increased lead time can provide useful information to water managers in improving the planning and management of water resources within the Kaidu River Basin. (C) 2013 American Society of Civil Engineers.