共检索到 3036

Soil organic matter (SOM) stability in Arctic soils is a key factor influencing carbon sequestration and greenhouse gas emissions, particularly in the context of climate change. Despite numerous studies on carbon stocks in the Arctic, a significant knowledge gap remains regarding the mechanisms of SOM stabilization and their impact on the quantity and quality of SOM across different tundra vegetation types. The main aim of this study was to determine SOM characteristics in surface horizons of permafrost-affected soils covered with different tundra vegetation types (pioneer tundra, arctic meadow, moss tundra, and heath tundra) in the central part of Spitsbergen (Svalbard). Physical fractionation was used to separate SOM into POM (particulate organic matter) and MAOM (mineral-associated organic matter) fractions, while particle-size fractionation was applied to evaluate SOM distribution and composition in sand, silt, and clay fractions. The results indicate that in topsoils under heath tundra POM fractions dominate the carbon and nitrogen pools, whereas in pioneer tundra topsoils, the majority of the carbon and nitrogen are stored in MAOM fractions. Moreover, a substantial proportion of SOM is occluded within macro-and microaggregates. Furthermore, the results obtained from FTIR analysis revealed substantial differences in the chemical properties of individual soil fractions, both concerning the degree of occlusion in aggregates and across particle size fractions. This study provides clear evidence that tundra vegetation types significantly influence both the spatial distribution and chemical composition of SOM in the topsoils of central Spitsbergen.

期刊论文 2026-03-01 DOI: 10.1016/j.catena.2025.109772 ISSN: 0341-8162

The thermal coupling between the atmosphere and the subsurface on the Qinghai-Tibetan Plateau (QTP) governs permafrost stability, surface energy balance, and ecosystem processes, yet its spatiotemporal dynamics under accelerated warming are poorly understood. This study quantifies soil-atmosphere thermal coupling ((3) at the critical 0.1 m root-zone depth using in-situ data from 99 sites (1980-2020) and a machine learning framework. Results show significantly weaker coupling in permafrost (PF) zones (mean (3 = 0.42) than in seasonal frost (SF) zones (mean (3 = 0.50), confirming the powerful thermal buffering of permafrost. Critically, we find a widespread trend of weakening coupling (decreasing (3) at 66.7 % of sites, a phenomenon most pronounced in SF zones. Our driver analysis reveals that the spatial patterns of (3 are primarily controlled by surface insulation from summer rainfall and soil moisture. The temporal trends, however, are driven by a complex and counter-intuitive interplay. Paradoxically, rapid atmospheric warming is the strongest driver of a strengthening of coupling, likely due to the loss of insulative snow cover, while trends toward wetter conditions drive a weakening of coupling by enhancing surface insulation. Spatially explicit maps derived from our models pinpoint hotspots of accelerated decoupling in the eastern and southern QTP, while also identifying high-elevation PF regions where coupling is strengthening, signaling a loss of protective insulation and increased vulnerability to degradation. These findings highlight a dynamic and non-uniform response of land-atmosphere interactions to climate change, with profound implications for the QTP's cryosphere, hydrology, and ecosystems.

期刊论文 2026-01-15 DOI: 10.1016/j.agrformet.2025.110925 ISSN: 0168-1923

This study assesses the stability of the Bei'an-Hei'he Highway (BHH), located near the southern limit of latitudinal permafrost in the Xiao Xing'anling Mountains, Northeast China, where permafrost degradation is intensifying under combined climatic and anthropogenic influences. Freeze-thaw-induced ground deformation and related periglacial hazards remain poorly quantified, limiting regional infrastructure resilience. We developed an integrated framework that fuses multi-source InSAR (ALOS, Sentinel-1, ALOS-2), unmanned aerial vehicle (UAV) photogrammetry, electrical resistivity tomography (ERT), and theoretical modeling to characterize cumulative deformation, evaluate present stability, and project future dynamics. Results reveal long-term deformation rates from -35 to +40 mm/yr within a 1-km buffer on each side of the BHH, with seasonal amplitudes up to 11 mm. Sentinel-1, with its 12-day revisit cycle, demonstrated superior capability for monitoring the Xing'an permafrost. Deformation patterns were primarily controlled by air temperature, while precipitation and the topographic wetness index enhanced spatial heterogeneity through thermo-hydrological coupling. Wavelet analysis identified a 334-day deformation cycle, lagging climate forcing by similar to 107 days due to the insulating effects of peat. Early-warning analysis classified 4.99 % of the highway length as high-risk (subsidence 10.91 mm/yr). The InSAR-based landslide prediction model achieved high accuracy (Area Under the Receiver Operating Characteristic (ROC) Curve, or AUC = 0.9486), validated through field surveys of subsidence, cracking, and slow-moving failures. The proposed 'past-present-future' framework demonstrates the potential of multi-sensor integration for permafrost monitoring and provides a transferable approach for assessing infrastructure stability in cold regions.

期刊论文 2026-01-15 DOI: 10.1016/j.rse.2025.115143 ISSN: 0034-4257

Amid global climate change, freeze-thaw cycles in cold regions have intensified, reducing the stability of infrastructures and significantly increasing the demand for grouting reinforcement. However, the deterioration in the durability of existing grouting materials under the combined effects of freeze-thaw cycles and low temperatures has become a major technical bottleneck restricting their application in cold regions. This paper focuses on polyurethane (PU) grouting materials with foaming and lifting characteristics, systematically reviewing the research progress and technical challenges associated with their engineering applications in cold regions. First, in terms of material composition and preparation, the core components and modified additives are detailed to establish a theoretical foundation for performance regulation. Second, addressing the application requirements in cold regions, standardized testing methods and comprehensive evaluation systems are summarized based on key indicators such as heat release temperature, impermeability, diffusion properties, mechanical strength, and expansion properties. Combined with microstructural characteristics, the deformation behavior and failure mechanisms of PU grouting materials under freeze-thaw cycles and salt-freezing environments are revealed. At the engineering application level, the challenges faced by PU grouting materials in cold regions-such as inhibited low-temperature reactivity and insufficient long-term durability-are highlighted. Finally, considering current research gaps, including the unclear mechanisms of microscopic dynamic evolution and the lack of studies on the combined effects of complex environments, future research directions are proposed. This paper aims to provide theoretical support for the development and application of PU grouting materials in cold-region geotechnical engineering.

期刊论文 2026-01-15 DOI: 10.1016/j.coldregions.2025.104766 ISSN: 0165-232X

Here, we present the result of different models for active layer thickness (ALT) in an area of the Italian Central Alps where a few information about the ALT is present. Looking at a particular warm year (2018), we improved PERMACLIM, a model used to calculate the Ground Surface Temperature (GST) and applied two different versions of Stefan's equation to model the ALT. PERMACLIM was updated refining the temporal basis (daily respect the monthly means) of the air temperature and the snow cover. PERMACLIM was updated also to minimize the bias of the snow cover in summer months using the PlanetScope images. Moreover, the contribution of the solar radiation was added to the air temperature to improve the summer GST. The modelled GST showed a good calibration and, among the two versions of Stefan's equation, the first (ALT1) indicates a maximum active layer thickness of 7.5 m and showed a better accuracy with R2 of 0.93 and RMSE of 0.32 m. The model underlined also the importance of better definition of the thermal conductivity of the ground that can strongly influence the ALT.

期刊论文 2026-01-15 DOI: 10.1016/j.coldregions.2025.104762 ISSN: 0165-232X

Ground ice, cryostratigraphical and sediment analyses have been done on samples from 16 boreholes covering the different landforms in the lower part of the valley Longyeardalen, where the largest settlement in Svalbard, Longyearbyen, is located. This allows the production of the first ever top 1 m permafrost ice content map showing the spatial distribution of ground ice (excess ice content) for the Longyearbyen area based on the collected ground ice data and the quaternary geology map of the valley. The valley was infilled since deglaciation with up to 45 m of mainly alluvial sediment and marine mud, whereas colluvial and till deposits with thicknesses from less than 1 m to more than 7 m are dominating the hillsides surrounding the valley. Rock glaciers and ice cored moraines are the landforms with the highest ice content, with assumed over 20% excess ice in the top metre of permafrost. Till and solifluction material has a medium ice content with 10%-20% excess ice content, whereas colluvial deposits have a low ice content with 5%-10% excess ice content. These landforms all have an active layer thickness between 1.6 and 2.2 m. Alluvial deposits in the valley floor has the lowest ice content with 0%-2% excess ice content. Pore ice, suspended ice and reticulate cryostructures dominates the ground ice types, with layered, lenticular and porphyritic cryostructures also present. Marine sediments are widespread and only found in the lower parts of the valley beneath the marine limit. These findings are important to understand and to be prepared for increased landslide risk that is expected due climate warming thawing the top of permafrost and bringing more rainfall in the near future.

期刊论文 2026-01-06 DOI: 10.1002/ppp.70027 ISSN: 1045-6740

Light-absorbing carbonaceous aerosols, comprising black carbon (BC) and brown carbon (BrC), significantly influence air quality and radiative forcing. Unlike traditional approaches that use a fixed value of absorption & Aring;ngstrom exponent (AAE), this study investigated the absorption and optical properties of carbonaceous aerosols in Beijing for both local emission and regional transport events during a wintertime pollution event by using improved AAE results that employs wavelength-dependent AAE (WDA). By calculating the difference of BC AAE at different wavelengths using Mie theory and comparing the calculated results to actual measurements from an Aethalometer (AE31), a more accurate absorption coefficient of BrC can be derived. Through the analysis of air mass sources, local emission was found dominated the pollution events during this study, accounting for 81 % of all cases, while regional transport played a minor role. Carbonaceous aerosols exhibited a continuous increasing trend during midday, which may be attributed to the re-entrainment of nighttime-accumulated carbonaceous aerosols to the surface during the early planetary boundary layer (PBL) development phase, as the mixed layer rises, combined with the variation of PBL and anthropogenic activity. At night, variations in the PBL height, in addition to anthropogenic activities, effectively contributed to surface aerosol concentrations, leading to peak surface aerosol values during local pollution episodes. The diurnal variation of AAE470/880 exhibited a decreasing trend, with a total decrease of approximately 12 %. Furthermore, the BrC fraction showed a constant diurnal variation, suggesting that the declining AAE470/880 was primarily influenced by BC, possibly due to enhanced traffic contributions.

期刊论文 2026-01-01 DOI: 10.1016/j.atmosenv.2025.121616 ISSN: 1352-2310

Biomass burning is a major source of carbonaceous aerosols that significantly influences the Earth's radiation balance. However, the spectral light absorption properties of biomass burning aerosols (BBAs), particularly the contribution of brown carbon (BrC), remain poorly constrained due to reliance on laboratory measurements that may not accurately represent real-world atmospheric conditions. To address this limitation, we developed an unmanned aerial vehicle (UAV) based-platform for direct in-situ measurements of BBAs in the ambient atmosphere over the rural North China Plain. This approach reduces biases inherent to laboratory chamber experiments and enables a more realistic characterization of BBAs absorption properties. Our measurements revealed that the absorption & Aring;ngstr & ouml;m exponent (AAE) for typical residential biomass burning was 3.70 +/- 0.04 under smoldering conditions and 1.50 +/- 0.08 under flaming conditions. Variations in AAE were driven primarily by combustion conditions and smoke humidity rather than fuel type. Additionally, field-observed OC/EC ratios were up to ten times higher than those reported in laboratory chamber studies, resulting in systematically lower mass absorption cross-sections. This finding suggests that the BBAs light absorption and radiative forcing estimates in the North China Plain may be systematically overestimated by chamber-based studies. Notably, under smoldering conditions, BrC absorption at 375 nm was up to 6.6 times greater than that of black carbon (BC) once mass emissions are considered, emphasizing that strategies aiming at reducing smoldering combustion could be particularly effective in mitigating the ultraviolet radiative effects of BBAs. Our results demonstrate that ambient atmospheric measurements are essential for accurately constraining BBAs absorption properties and their climate impacts.

期刊论文 2026-01-01 DOI: 10.1007/s11430-025-1781-0 ISSN: 1674-7313

The changing Arctic climate is affecting groundwater flow and storage in supra-permafrost aquifers due to groundwater recharge changes and thaw-driven alterations to aquifer properties and connectivity. Changes to shallow subsurface hydrological processes can drive extensive ecological and biogeochemical changes in addition to potential surface hydrologic regime shifts. This study uses a pan-Arctic geospatial approach to classify shallow, unconfined Arctic aquifers (supra-permafrost aquifers) as topography-limited (TL) (characterized by low permeability, wet climate, and/or low slopes) or recharge-limited (high permeability, dry climate and/or steep slopes) based on the water table ratio framework. Under current conditions, the continuous and discontinuous permafrost zones were determined to be predominantly (65%) TL, with an average net decrease of 5.6% by the year 2100 under RCP2.6 and RCP8.5 conditions. This apparent stability masks local-scale heterogeneity, with change in aquifer function projected at dispersed locations throughout the Arctic, and in clustered hot spots in Siberia and the central Canadian Arctic. Coastal zones around the Arctic are more TL (94%) compared to the overall average, leaving them especially vulnerable to ocean-driven impacts on groundwater such as subsurface seawater intrusion or groundwater flooding. Arctic coasts in Siberia and eastern Canada are also particularly susceptible to water table rise due to high relative sea-level rise which may exceed the active layer thickness and result in substantive changes to saturation. Classification results are sensitive to input values, particularly hydraulic conductivity, which remains a source of uncertainty in the analysis. Despite the sparsity of Arctic data, the available open-source datasets provide valuable insight into broad spatiotemporal trends in aquifer function and highlight particularly vulnerable regions and geographic areas where uncertainty should drive additional data collection and study. These results provide new context for conceptualizing changes to shallow Arctic aquifers as the climate evolves in the 21st century.

期刊论文 2026-01-01 DOI: 10.1088/1748-9326/ae358e ISSN: 1748-9326

Conventional materials necessitate a layer-by-layer rolling or tamping process for subgrade backfill projects, which hampers their utility in confined spaces and environments where compaction is challenging. To address this issue, a self-compacting poured solidified mucky soil was prepared. To assess the suitability of this innovative material for subgrade, a suite of performance including flowability, bleeding rate, setting time, unconfined compressive strength (UCS), and deformation modulus were employed as evaluation criteria. The workability and mechanical properties of poured solidified mucky soil were compared. The durability and solidification mechanism were investigated. The results demonstrate that the 28-day UCS of poured solidified mucky soil with 20% curing agent content reaches 2.54 MPa. The increase of organic matter content is not conducive to the solidification process. When the curing temperature is 20 degrees C, the 28-day UCS of the poured solidified mucky soil with curing agent content not less than 12% is greater than 0.8 MPa. The three-dimensional network structure formed with calcium silicate hydrate, calcium aluminate hydrate, and ettringite is the main source of strength formation. The recommended mud moisture content is not exceed 85%, the curing agent content is 16%, and the curing temperature should not be lower than 20 degrees C.

期刊论文 2025-12-31 DOI: 10.1080/10298436.2025.2508345 ISSN: 1029-8436
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共3036条,304页