共检索到 11

Palsas and peat plateaus occur in various environmental conditions, but their driving environmental factors have not been examined across the Northern Hemisphere with harmonized datasets. Such comparisons can deepen our understanding of these landforms and their response to climate change. We conducted a comparative study between four regions: Hudson Bay, Iceland, Northern Fennoscandia, and Western Siberia by integrating landform observations and geospatial data into a MaxEnt model. Climate and hydrological conditions were identified as primary, yet regionally divergent, factors affecting palsa and peat plateau occurrence. Suitable conditions for these landforms entail specific temperature ranges (500-1500 thawing degree days, 500-4000 freezing degree days), around 300 mm of rainfall, and high soil moisture accumulation potential. Iceland's conditions, in particular, differ due to higher precipitation, a narrower temperature range, and the significance of soil organic carbon content. The annual thermal balance is a critical factor in understanding the occurrence of permafrost peatlands and should be considered when comparing different regions. We conclude that palsas and peat plateaus share similar topographic conditions but occupy varying soil conditions and climatic niches across the Northern Hemisphere. These findings have implications for understanding the climatic sensitivity of permafrost peatlands and identifying potential greenhouse gas emitters.

2025-01-01 Web of Science

Among the essential tools to address global environmental information requirements are the Earth-Observing (EO) satellites with free and open data access. This paper reviews those EO satellites from international space programs that already, or will in the next decade or so, provide essential data of importance to the environmental sciences that describe Earth's status. We summarize factors distinguishing those pioneering satellites placed in space over the past half century, and their links to modern ones, and the changing priorities for spaceborne instruments and platforms. We illustrate the broad sweep of instrument technologies useful for observing different aspects of the physio-biological aspects of the Earth's surface, spanning wavelengths from the UV-A at 380 nanometers to microwave and radar out to 1 m. We provide a background on the technical specifications of each mission and its primary instrument(s), the types of data collected, and examples of applications that illustrate these observations. We provide websites for additional mission details of each instrument, the history or context behind their measurements, and additional details about their instrument design, specifications, and measurements.

2024-06-01 Web of Science

The of the Yellow River between its source and Hekou Town in Inner Mongolia is known as the Upper Yellow River Basin. It is the main source area of water resources in the Yellow River Basin, providing reliable water resources for 120 million people. Studying the hydrometeorological changes in the Upper Yellow River Basin is crucial for the development of human society. However, in the past, there has been limited research on hydrometeorological changes in the Upper Yellow River Basin. In order to clarify the four-dimensional spatiotemporal variation characteristics of hydrometeorological elements in the Upper Yellow River Basin, satellite and reanalysis hydrometeorological elements products need to be used. Unfortunately, there is currently a lack of precise evaluation studies on satellite and reanalysis hydrometeorological elements products in the Upper Yellow River Basin, and the geomorphic characteristics of this area have raised doubts about the accuracy of satellite and reanalysis hydrometeorological elements products. Thus, the evaluation study in the Upper Yellow River Basin is an important prerequisite for studying the four-dimensional spatiotemporal changes of hydrometeorological elements. When conducting evaluation study, we found that previous evaluation studies had a very confusing understanding of the spatiotemporal characteristics of datasets. Some papers even treated the spatiotemporal characteristics of evaluation metrics as the spatiotemporal characteristics of datasets. Therefore, we introduced a four-dimensional spacetime of both datasets and evaluation metrics to rectify the chaotic spatiotemporal view in the past. Our research results show that satellite and reanalysis hydrometeorological elements products have different abilities in describing the temporal and spatial distribution and change characteristics of hydrometeorological elements. The difference in the ability of satellite and reanalysis hydrometeorological elements products to describe temporal and spatial distribution and change characteristics requires us to select data at different temporal and spatial scales according to research needs when conducting hydrometeorological research, in order to ensure the credibility of the research results.

2024-05

The retreat of glaciers in Antarctica has increased in the last decades due to global climate change, influencing vegetation expansion, and soil physico-chemical and biological attributes. However, little is known about soil microbiology diversity in these periglacial landscapes. This study characterized and compared bacterial and fungal diversity using metabarcoding of soil samples from the Byers Peninsula, Maritime Antarctica. We identified bacterial and fungal communities by amplification of bacterial 16 S rRNA region V3-V4 and fungal internal transcribed spacer 1 (ITS1). We also applied 14C dating on soil organic matter (SOM) from six profiles. Physicochemical analyses and attributes associated with SOM were evaluated. A total of 14,048 bacterial ASVs were obtained, and almost all samples had 50% of their sequences assigned to Actinobacteriota and Proteobacteria. Regarding the fungal community, Mortierellomycota, Ascomycota and Basidiomycota were the main phyla from 1619 ASVs. We found that soil age was more relevant than the distance from the glacier, with the oldest soil profile (late Holocene soil profile) hosting the highest bacterial and fungal diversity. The microbial indices of the fungal community were correlated with nutrient availability, soil reactivity and SOM composition, whereas the bacterial community was not correlated with any soil attribute. The bacterial diversity, richness, and evenness varied according to presence of permafrost and moisture regime. The fungal community richness in the surface horizon was not related to altitude, permafrost, or moisture regime. The soil moisture regime was crucial for the structure, high diversity and richness of the microbial community, specially to the bacterial community. Further studies should examine the relationship between microbial communities and environmental factors to better predict changes in this terrestrial ecosystem.

2024-01-15 Web of Science

Soil supports life by serving as a living, breathing fabric that connects the atmosphere to the Earth's crust. The study of soil science and pedology, or the study of soil in the natural environment, spans scales, disciplines, and societies worldwide. Soil science continues to grow and evolve as a field given advancements in analytical tools, capabilities, and a growing emphasis on integrating research across disciplines. A pressing need exists to more strongly incorporate the study of soil, and soil scientists, into research networks, initiatives, and collaborations. This review presents three research areas focused on questions of central interest to scientists, students, and government agencies alike: 1) How do the properties of soil influence the selection of habitat and survival by organisms, especially threatened and endangered species struggling in the face of climate change and habitat loss during the Anthropocene? 2) How do we disentangle the heterogeneity of abiotic and biotic processes that transform minerals and release life-supporting nutrients to soil, especially at the nano-to microscale where mineral-water-microbe interactions occur? and 3) How can soil science advance the search for life and habitable environments on Mars and beyond-from distinguishing biosignatures to better utilizing terrestrial analogs on Earth for planetary exploration? This review also highlights the tools, resources, and expertise that soil scientists bring to interdisciplinary teams focused on questions centered belowground, whether the research areas involve conservation organizations, industry, the classroom, or government agencies working to resolve global chal-lenges and sustain a future for all.

2023-02-01 Web of Science

Detailed examination of the impact of modern space launches on the Earth's atmosphere is crucial, given booming investment in the space industry and an anticipated space tourism era. We develop air pollutant emissions inventories for rocket launches and re-entry of reusable components and debris in 2019 and for a speculative space tourism scenario based on the recent billionaire space race. This we include in the global GEOS-Chem model coupled to a radiative transfer model to determine the influence on stratospheric ozone (O-3) and climate. Due to recent surge in re-entering debris and reusable components, nitrogen oxides from re-entry heating and chlorine from solid fuels contribute equally to all stratospheric O-3 depletion by contemporary rockets. Decline in global stratospheric O-3 is small (0.01%), but reaches 0.15% in the upper stratosphere (similar to 5 hPa, 40 km) in spring at 60-90 degrees N after a decade of sustained 5.6% a(-1) growth in 2019 launches and re-entries. This increases to 0.24% with a decade of emissions from space tourism rockets, undermining O-3 recovery achieved with the Montreal Protocol. Rocket emissions of black carbon (BC) produce substantial global mean radiative forcing of 8 mW m(-2) after just 3 years of routine space tourism launches. This is a much greater contribution to global radiative forcing (6%) than emissions (0.02%) of all other BC sources, as radiative forcing per unit mass emitted is similar to 500 times more than surface and aviation sources. The O-3 damage and climate effect we estimate should motivate regulation of an industry poised for rapid growth.

2022-06-01 Web of Science

The Mongolian Plateau is one of the regions most sensitive to climate change, the more obvious increase of temperature in 21st century here has been considered as one of the important causes of drought and desertification. It is very important to understand the multi-year variation and occurrence characteristics of drought in the Mongolian Plateau to explore the ecological environment and the response mechanism of surface materials to climate change. This study examines the spatio-temporal variations in drought and its frequency of occurrence in the Mongolian Plateau based on the Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) (1982-1999) and the Moderate-resolution Imaging Spectroradiometer (MODIS) (2000-2018) datasets; the Temperature Vegetation Dryness Index (TVDI) was used as a drought evaluation index. The results indicate that drought was widespread across the Mongolian Plateau between 1982 and 2018, and aridification incremented in the 21st century. Between 1982 and 2018, an area of 164.38 x 10(4) km(2)/yr suffered from drought, accounting for approximately 55.28% of the total study area. An area of approximately 150.06 x 10(4) km(2) (51.43%) was subject to more than 160 droughts during 259 months of the growing seasons between 1982 and 2018. We observed variable frequencies of drought occurrence depending on land cover/land use types. Drought predominantly occurred in bare land and grassland, both of which accounting for approximately 79.47% of the total study area. These terrains were characterized by low vegetation and scarce precipitation, which led to frequent and extreme drought events. We also noted significant differences between the areal distribution of drought, drought frequency, and degree of drought depending on the seasons. In spring, droughts were widespread, occurred with a high frequency, and were severe; in autumn, they were localized, frequent, and severe; whereas, in summer, droughts were the most widespread and frequent, but less severe. The increase in temperature, decrease in precipitation, continuous depletion of snow cover, and intensification of human activities have resulted in a water deficit. More severe droughts and aridification have affected the distribution and functioning of terrestrial ecosystems, causing changes in the composition and distribution of plants, animals, microorganisms, conversion between carbon sinks and carbon sources, and biodiversity. We conclude that regional drought events have to be accurately monitored, whereas their occurrence mechanisms need further exploration, taking into account nature, climate, society and other influencing factors.

2020-12-01 Web of Science

This paper reviews and analyses the past 20 years of change and variability of European mountain permafrost in response to climate change based on time series of ground temperatures along a south-north transect of deep boreholes from Sierra Nevada in Spain (37 degrees N) to Svalbard (78 degrees N), established between 1998 and 2000 during the EU-funded PACE (Permafrost and Climate in Europe) project. In Sierra Nevada (at the Veleta Peak), no permafrost is encountered. All other boreholes are drilled in permafrost. Results show that permafrost warmed at all sites down to depths of 50 m or more. The warming at a 20 m depth varied between 1.5 degrees C on Svalbard and 0.4 degrees C in the Alps. Warming rates tend to be less pronounced in the warm permafrost boreholes, which is partly due to latent heat effects at more ice-rich sites with ground temperatures close to 0 degrees C. At most sites, the air temperature at 2 m height showed a smaller increase than the near-ground-surface temperature, leading to an increase of surface offsets (SOs). The active layer thickness (ALT) increased at all sites between c. 10% and 200% with respect to the start of the study period, with the largest changes observed in the European Alps. Multi-temporal electrical resistivity tomography (ERT) carried out at six sites showed a decrease in electrical resistivity, independently supporting our conclusion of ground ice degradation and higher unfrozen water content.

2020-10-01 Web of Science

Remote sensing, as a crucial method to obtain information on water environmental processes, has become a major source of data, particularly of water environment and water resources, which are sensitive to global climate change. The bibliometric analysis provided here shows the research characteristics and developments of remote sensing-based observations of water environmental processes under a changing climate from 2000 to 2018. Visualized knowledge mapping is introduced to investigate the development status, scientific collaboration, involved disciplines, research hotspots and emerging trends of this field. The breadth and depth of remote sensing application in water environmental process studies have improved significantly as the number of related publications rose at an average annual growth rate of 15.97% in the 21st century. The United States and China were the leading contributors with the largest number of publications and all of the top 15 most active institutions. In addition, this field is a highly interdisciplinary field that covers a wide range of interests, from water resources to environmental science, geology, engineering, ecology, and agriculture. The application of remote sensing technology has significantly promoted the estimation of evapotranspiration and soil moisture, thereby offering a more complete perspective to the understanding of the water cycle. Additionally, climate change and its complex interactions with water environmental processes, including the occurrence of drought events, are of great significance and require special attention.

2019-07-01 Web of Science

We have investigated the variability of smoke aerosol absorbing ability with variations in the content of brown carbon (BrC) and black carbon (BC). Using monitoring data on radiative characteristics of smoke aerosol at AERONET stations and the spatial distribution of aerosol optical depth (AOD) obtained by the MODIS spectrometer (Terra satellite), we have detected large-scale smokes during boreal forest fires in Russia and Canada (1995-2012). The spatial distribution (50A degrees-70A degrees N, 95A degrees-125A degrees W) and temporal variability (at AERONET station Fort McMurray) of AOD during the smoking of a part of Canada in July 2012 have been analyzed. AOD probability distributions for July 14-18, 2012, and an estimate of aerosol radiative forcing of smoke aerosol at the upper boundary of the atmosphere have been obtained. We have proposed a technique for the diagnostics of BrC and BC in smoke aerosol particles from the spectral dependence of the imaginary part of the refractive index. At a wavelength of 440 nm, the contributions of BrC and BC to the smokeaerosol absorbing abitity can be comparable in magnitude. In many cases, the absorption spectra of smoke aerosol can be adequately approximated by either power or exponential functions. The presence of BrC in smoke-aerosol particles highly extends the variety of observed absorption spectra in a smoky atmosphere and spectral dependences of single scattering albedo. In the spectral range of 440-1020 nm, the radiative characteristics of smoke aerosol are largely contributed by its fine mode.

2017-12-01 Web of Science
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共11条,2页