共检索到 10

Daurian Pika ( Ochotona dauurica) are steppe-dwelling burrowing mammals with the potential to have large effects on central Asian grasslands due to their extensive range, propensity to occur at extremely high density, and roles as ecosystem engineers and important prey species. The few studies that have been done are mostly from northern China and Russia, while little research has been done in the majority of their range in Mongolia. We studied a population of Daurian Pika in the Darhad Valley of northern Mongolia, near the southern edge of the permafrost, where climate change is progressing rapidly. We evaluated pika populations at 87 random plots across a large 40 x 125 km area and assessed the impact of factors related to vegetation cover, grazing, and soils that predicted their occupancy and an index of their density (number of active burrows). We found that pikas were more likely to occur in areas with taller grass and higher forb cover, and burrow densities were higher in areas with low or moderate grazing and lower soil moisture. In summer, pikas mainly foraged on grass compared with forbs-while in fall, forbs appeared to be selected for in haypiles. Dense pika burrow systems had taller grasses and forbs in their immediate vicinity, suggesting that in some cases, pika could help promote plant growth for other grazers. Long-tailed Ground Squirrel (Urocitellus undulatus) was the second most abundant small mammal in our study sight and selected for areas with high cover of overgrazing indicator species and for short forbs, providing little evidence for competition with Daurian Pika. Our results suggest that shorter grass (similar to 1 cm) can decrease pika occupancy by 75%, while heavy grazing may decrease burrow density by 66% in dry soils. With grazing pressure in Mongolia increasing dramatically since the 1990s, future research is strongly needed to assess the impacts of grazing on this keystone species.

期刊论文 2024-11-15 DOI: 10.1093/jmammal/gyae132 ISSN: 0022-2372

Arctic permafrost soils store substantial reserves of organic matter (OM) from which microbial transformation contributes significantly to greenhouse gas emissions of CH4 and CO2. However, many younger sediments exposed by glacier retreat and sea level change in fjord landscapes lack significant organic carbon resources, so their capacity to promote greenhouse gas emissions is unclear. We therefore studied the effects of increased temperatures (4 degrees C and 21 degrees C) and OM on rates of Fe(III) reduction, CO2 production, and methanogenesis in three different Holocene sedimentary units from a single site within the former marine limit of Adventdalen, Svalbard. Higher temperature and OM addition generally stimulated CH4 production and CO2 production and an increase in Bacteria and Archaea abundance in all units, whereas an equal stimulation of Fe(II) production by OM amendment and an increase in temperature to 21 degrees C was only observed in a diamicton. We observed an accumulation of Fe(II) in beach and delta deposits as well but saw no stimulating effect of additional OM or increased temperature. Interestingly, we observed a small but significant production of CH4 in all units despite the presence of large reservoirs of Fe(III), sulfate, and nitrate, indicating either the availability of substrates that are primarily used by methanogens or a tight physical coupling between fermentation and methanogenesis by direct electron transfer. Our study clearly illustrates a significant challenge that comes with the large heterogeneity on a narrow spatial scale that one encounters when studying soils that have complex histories.

期刊论文 2022-12-31 DOI: 10.1080/15230430.2022.2097757 ISSN: 1523-0430

The Loess Plateau, located in Gansu Province, is an important energy base in China because most of the oil and gas resources are distributed in Gansu Province. In the last 40 a, ecological environment in this region has been extremely destroyed due to the over-exploitation of crude-oil resources. Remediation of crude-oil contaminated soil in this area remains to be a challenging task. In this study, in order to elucidate the effects of organic compost and biochar on phytoremediation of crude-oil contaminated soil (20 g/kg) by Calendula officinalis L., we designed five treatments, i.e., natural attenuation (CK), planted C. officinalis only (P), planted C. officinalis with biochar amendment (PB), planted C. officinalis with organic compost amendment (PC), and planted C. officinalis with co-amendment of biochar and organic compost (PBC). After 152 d of cultivation, total petroleum hydrocarbons (TPH) removal rates of CK, P, PB, PC and PBC were 6.36%, 50.08%, 39.58%, 73.10% and 59.87%, respectively. Shoot and root dry weights of C. officinalis significantly increased by 172.31% and 80.96% under PC and 311.61% and 145.43% under PBC, respectively as compared with P (P<0.05). Total chlorophyll contents in leaves of C. officinalis under P, PC and PBC significantly increased by 77.36%, 125.50% and 79.80%, respectively (P<0.05) as compared with PB. Physical-chemical characteristics and enzymatic activity of soil in different treatments were also assessed. The highest total N, total P, available N, available P and SOM occurred in PC, followed by PBC (P<0.05). C. officinalis rhizospheric soil dehydrogenase (DHA) and polyphenol oxidase (PPO) activities in PB were lower than those of other treatments (P<0.05). The values of ACE (abundance-based coverage estimators) and Chao indices for rhizospheric bacteria were the highest under PC followed by PBC, P, PB and CK (P<0.05). However, the Shannon index for bacteria was the highest under PC and PBC, followed by P, PB and CK (P<0.05). In terms of soil microbial community composition, Proteiniphilum, Immundisolibacteraceae and Solimonadaceae were relatively more abundant under PC and PBC. Relative abundances of Pseudallescheria, Ochroconis, Fusarium, Sarocladium, Podospora, Apodus, Pyrenochaetopsis and Schizpthecium under PC and PBC were higher, while relative abundances of Gliomastix, Aspergillus and Alternaria were lower under PC and PBC. As per the nonmetric multidimensional scaling (NMDS) analysis, application of organic compost significantly promoted soil N and P contents, shoot length, root vitality, chlorophyll ratio, total chlorophyll, abundance and diversity of rhizospheric soil microbial community in C. officinalis. A high pH value and lower soil N and P contents induced by biochar, altered C. officinalis rhizospheric soil microbial community composition, which might have restrained its phytoremediation efficiency. The results suggest that organic compost-assisted C. officinalis phytoremediation for crude-oil contaminated soil was highly effective in the Loess Plateau, China.

期刊论文 2022-10-01 DOI: http://dx.doi.org/10.1007/s40333-021-0011-7 ISSN: 1674-6767

warming associated with a huge input of reduced carbon into the ocean, atmosphere and biosphere. The magnitude of carbon release during the PETM was very similar to the present anthropogenic carbon dioxide emission by burning fossil fuels. Current data estimate that the total amount of carbon released during the PETM was similar in magnitude to the IPCC RCP8.5 emission scenario. Therefore, a comprehensive study of the PETM provides a unique opportunity for understanding the relationship between carbon emission and climate change, and may help to quantitatively assess the carbon sequestration potential and rate of changes in the ecosystem, ocean and lithosphere. So far, the basic outline of massive carbon release and extreme warmth during the PETM is well established, but many important aspects regarding the carbon cycle during the event remain unresolved. The source of the carbon is still debated, with hypothesized carbon sources including methane hydrates in the ocean floor, soil organic carbon in circum-Arctic and Antarctic terrestrial permafrost, shallow-buried peat and coal, volcanic degassing, thermogenic methane caused by volcanic intrusions, and a cometary impact. The controversy can be encapsulated by two questions: (1) Is the PETM unique or only one case among many similar events? (2) What was the coupled relationship between the fine structure of the carbon isotope excursion and environmental change during the PETM? Uncertainty about the source also creates uncertainty about the amount and rate of carbon released, and the fate of the massive excess carbon at the end of the event is also poorly constrained. Here, we summarize and analyze carbon-cycle dynamics during the PETM and draw three preliminary conclusions. First, a massive release of C-12-enriched carbon operated as a positive feedback to the temperature increase during the PETM, implying that methane hydrates and/or permafrost were plausible carbon sources. In particular, peak temperatures of short duration are associated with minimum carbon isotope values, suggesting that the carbon source was probably exhausted, and the positive feedback ceased. Second, the total amount of carbon released during the PETM was in the range of 4000-10000 Gt C, reflecting considerable uncertainty caused by the large range of the magnitude of the carbon isotope excursion. The average rate of carbon emission during the PETM is estimated to have been in the range of 0.15-1 Gt C/a, an order of magnitude lower than the present rate of anthropogenic carbon emission, implying that current human activities may trigger a positive feedback of the Earth's surface system and intensify global warming. Therefore, to avoid the initiation of the potential feedback of the warming-induced decomposition of reduced carbon reservoirs, as well as the accompanying major environmental perturbation, it is urgently necessary to reduce or slow the carbon emissions. Third, excess C-12-enriched carbon was removed from the exogenic carbon pool during the PETM recovery on a timescale of similar to 40 ka, much faster than the similar to 100 ka that is expected for carbon uptake only by silicate weathering. These observations suggest that the fertilization effect of CO2 on plant growth, the regeneration of carbon stores in the high-latitude terrestrial biosphere, and the enhanced efficiency of the marine biological pump accelerated the rate of carbon sequestration and the subsequent recovery from the PETM.

期刊论文 2022-01-01 DOI: 10.1360/TB-2021-0652 ISSN: 0023-074X

Broad-scale changes in arctic-alpine vegetation and their global effects have long been recognized and labeled one of the clearest examples of the terrestrial impacts of climate change. Arctic-alpine dwarf shrubs are a key factor in those processes, responding to accelerated warming in complex and still poorly understood ways. Here, we look closely into such responses of deciduous and evergreen species, and for the first time, we make use of high-precision dendrometers to monitor the radial growth of dwarf shrubs at unprecedented temporal resolution, bridging the gap between classical dendroecology and the underlying growth physiology of a species. Using statistical methods on a five-year dataset, including a relative importance analysis based on partial least squares regression, linear mixed modeling, and correlation analysis, we identified distinct growth mechanisms for both evergreen (Empetrum nigrum ssp. hermaphroditum) and deciduous (Betula nana) species. We found those mechanisms in accordance with the species respective physiological requirements and the exclusive micro-environmental conditions, suggesting high phenotypical plasticity in both focal species. Additionally, growth in both species was negatively affected by unusually warm conditions during summer and both responded to low winter temperatures with radial stem shrinking, which we interpreted as an active mechanism of frost protection related to changes in water availability. However, our analysis revealed contrasting and inter-annually nuanced response patterns. While B. nana benefited from winter warming and a prolonged growing season, E. hermaphroditum showed high negative sensitivity to spring cold spells after an earlier growth start, relying on additional photosynthetic opportunities during snow-free winter periods. Thus, we conclude that climate-growth responses of dwarf shrubs in arctic-alpine environments are highly seasonal and heterogenic, and that deciduous species are overall likely to show a positive growth response to predicted future climate change, possibly dominating over evergreen competitors at the same sites, contributing to the ongoing greening trend.

期刊论文 2021-08-01 DOI: 10.1002/ecs2.3688 ISSN: 2150-8925

In the Tibetan Plateau grassland ecosystems, nitrogen (N) availability is rising dramatically; however, the influence of higher N on the arbuscular mycorrhizal fungi (AMF) might impact on plant competitive interactions. Therefore, understanding the part played by AMF in the competition between Vicia faba and Brassica napus and its dependence on the N-addition status is necessary. To address this, a glasshouse experiment was conducted to examine whether the grassland AMF community's inocula (AMF and NAMF) and N-addition levels (N-0 and N-15) alter plant competition between V. faba and B. napus. Two harvests took day 45 (1(st) harvest) and day 90 (2(nd) harvest), respectively. The findings showed that compared to B. napus, AMF inoculation significantly improved the competitive potential of the V. faba. In the occurrence of AMF, V. faba was the strongest competitor being facilitated by B. napus in both harvests. While under N-15, AMF significantly enhanced tissue N:P ratio in B. napus mixed-culture at 1(st) harvest, the opposite trend was observed in 2(nd) harvest. The mycorrhizal growth dependency slightly negatively affected mixed-culture compared to monoculture under both N-addition treatments. The aggressivity index of AMF plants was higher than NAMF plants with both N-addition and harvests. Our observation highlights that mycorrhizal associations might facilitate host plant species in mixed-culture with non-host plant species. Additionally, interacting with N-addition, AMF could impact the competitive ability of the host plant not only directly but also indirectly, thereby changing the growth and nutrient uptake of competing plant species.

期刊论文 2020-11-01 DOI: http://dx.doi.org/10.3389/fpls.2023.1084218 ISSN: 1664-462X

Warming in the Arctic accelerates top-soil decomposition and deep-soil permafrost thaw. This may lead to an increase in plant-available nutrients throughout the active layer soil and near the permafrost thaw front. For nitrogen (N) limited high arctic plants, increased N availability may enhance growth and alter community composition, importantly affecting the ecosystem carbon balance. However, the extent to which plants can take advantage of this newly available N may be constrained by the following three factors: vertical distribution of N within the soil profile, timing of N-release, and competition with other plants and microorganisms. Therefore, we investigated species- and depth-specific plant N uptake in a high arctic tundra, northeastern Greenland. Using stable isotopic labelling (N-15-NH4+), we simulated autumn N-release at three depths within the active layer: top (10 cm), mid (45 cm) and deep-soil near the permafrost thaw front (90 cm). We measured plant species-specific N uptake immediately after N-release (autumn) and after 1 year, and assessed depth-specific microbial N uptake and resource partitioning between above- and below-ground plant parts, microorganisms and soil. We found that high arctic plants actively foraged for N past the peak growing season, notably the graminoidKobresia myosuroides. While most plant species (Carex rupestris,Dryas octopetala,K. myosuroides) preferred top-soil N, the shrubSalix arcticaalso effectively acquired N from deeper soil layers. All plants were able to obtain N from the permafrost thaw front, both in autumn and during the following growing season, demonstrating the importance of permafrost-released N as a new N source for arctic plants. Finally, microbial N uptake markedly declined with depth, hence, plant access to deep-soil N pools is a competitive strength. In conclusion, plant species-specific competitive advantages with respect to both time- and depth-specific N-release may dictate short- and long-term plant community changes in the Arctic and consequently, larger-scale climate feedbacks.

期刊论文 2020-11-01 DOI: 10.1111/gcb.15306 ISSN: 1354-1013

1. Climate warming is faster in the Arctic than the global average. Nutrient availability in the tundra soil is expected to increase by climate warming through (i) accelerated nutrient mobilization in the surface soil layers, and (ii) increased thawing depths during the growing season which increases accessibility of nutrients in the deeper soil layers. Both processes may initiate shifts in tundra vegetation composition. It is important to understand the effects of these two processes on tundra plant functional types. 2. We manipulated soil thawing depth and nutrient availability at a Northeast-Siberian tundra site to investigate their effects on above- and below-ground responses of four plant functional types (grasses, sedges, deciduous shrubs and evergreen shrubs). Seasonal thawing was accelerated with heating cables at c. 15 cm depth without warming the surface soil, whereas nutrient availability was increased in the surface soil by adding slow-release NPK fertilizer at c. 5 cm depth. A combination of these two treatments was also included. This is the first field experiment specifically investigating the effects of accelerated thawing in tundra ecosystems. 3. Deep soil heating increased the above-ground biomass of sedges, the deepest rooted plant functional type in our study, but did not affect biomass of the other plant functional types. In contrast, fertilization increased above-ground biomass of the two dwarf shrub functional types, both of which had very shallow root systems. Grasses showed the strongest response to fertilization, both above-and below-ground. Grasses were deep-rooted, and they showed the highest plasticity in terms of vertical root distribution, as grass root distribution shifted to deep and surface soil in response to deep soil heating and surface soil fertilization respectively. 4. Synthesis. Our results indicate that increased thawing depth can only benefit deep-rooted sedges, while the shallow-rooted dwarf shrubs, as well as flexible-rooted grasses, take advantage of increased nutrient availability in the upper soil layers. Our results suggest that grasses have the highest root plasticity, which enables them to be more competitive in rapidly changing environments. We conclude that root vertical distribution strategies are important for vegetation responses to climate-induced increases in soil nutrient availability in Arctic tundra, and that future shifts in vegetation composition will depend on the balance between changes in thawing depth and nutrient availability in the surface soil.

期刊论文 2017-07-01 DOI: 10.1111/1365-2745.12718 ISSN: 0022-0477

Aridity index (AI), defined as the ratio of precipitation to potential evapotranspiration (PET), is a measure of the dryness of terrestrial climate. Global climate models generally project future decreases of AI (drying) associated with global warming scenarios driven by increasing greenhouse gas and declining aerosols. Given their different effects in the climate system, scattering and absorbing aerosols may affect AI differently. Here we explore the terrestrial aridity responses to anthropogenic black carbon (BC) and sulfate (SO4) aerosols with Community Earth System Model simulations. Positive BC radiative forcing decreases precipitation averaged over global land at a rate of 0.9%/degrees C of global mean surface temperature increase (moderate drying), while BC radiative forcing increases PET by 1.0%/degrees C (also drying). BC leads to a global decrease of 1.9%/degrees C in AI (drying). SO4 forcing is negative and causes precipitation a decrease at a rate of 6.7%/degrees C cooling (strong drying). PET also decreases in response to SO4 aerosol cooling by 6.3%/degrees C cooling (contributing to moistening). Thus, SO4 cooling leads to a small decrease in AI (drying) by 0.4%/degrees C cooling. Despite the opposite effects on global mean temperature, BC and SO4 both contribute to the twentieth century drying (AI decrease). Sensitivity test indicates that surface temperature and surface available energy changes dominate BC- and SO4-induced PET changes.

期刊论文 2016-01-27 DOI: 10.1002/2015JD024100 ISSN: 2169-897X

The leaf wax characteristics of Dryas octopetala and Saxifraga oppositifolia, collected from the high Arctic semi-desert of Svalbard, Norway (79 degrees N, 13 degrees E), were compared and differences in their wax composition related to winter snow cover. The leaf wax composition of the winter-green D. octopetala differed from that of the herbaceous S. oppositifolia in that high abundances of the triterpenoids, ursolic acid, oleanoic acid and uvaol, were observed in D. octopetala extracts but not in S. oppositifolia extracts. D. octopetala leaf waxes were consistently lower in n-alkanes and in n-alkanols compared to the leaf waxes of S. oppositifolia. Leaf waxes of both species from snow-free, wind-swept microsites had significantly higher abundances of n-alkanes than in those plants growing in adjacent, swale areas where snow accumulates in winter. It is hypothesized that this higher abundance of n-alkanes may be due to a response to a greater degree of dessication, lower temperatures and lower soil moisture experienced by plants on the snow-free ridge microsites during leaf expansion. In order to test whether these biochemical and anatomical attributes might change in response to short term alterations in winter climate, snow fences were erected on ridge sites. The wax attributes of ridge plants exposed to a single year of increased winter snow cover were examined and the n-alkane composition of leaf waxes were observed to be more like those of plants growing in adjacent swale areas than for those of ridge plants growing in unmanipulated areas. This shift in leaf wax composition implies that environmental differences during leaf development can have an influence on final leaf wax composition.

期刊论文 1995-01-01 DOI: 10.1016/0031-9422(94)00649-E ISSN: 0031-9422
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-10条  共10条,1页