The morphology of sheep wool applied as organic fertilizer biodegraded in the soil was examined. The investigations were conducted in natural conditions for unwashed waste wool, which was rejected during sorting and then chopped into short segments and wool pellets. Different types of wool were mixed with soil and buried in experimental plots. The wool samples were periodically taken and analyzed for one year using Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray Spectroscopy (EDS). During examinations, the changes in the fibers' morphology were observed. It was stated that cut wool and pellet are mechanically damaged, which significantly accelerates wool biodegradation and quickly destroys the whole fiber structure. On the contrary, for undamaged fibers biodegradation occurs slowly, layer by layer, in a predictable sequence. This finding has practical implications for the use of wool as an organic fertilizer, suggesting that the method of preparation can influence its biodegradation rate. (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(SEM)(sic)(sic)(sic)(sic)(sic)X(sic)(sic)(sic)(sic)(EDS)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).
Lime-activated ground granulated blast furnace slag (GGBS) is usually used to treat gypseous soils. However, sulphate-bearing soils often contain other sulphates, e.g., sodium sulphate (Na2SO4), potassium sulphate (K2SO4) and magnesium sulphate (MgSO4). Therefore, in this study, lime-GGBS was used as a curing agent for stabilising four sulphate-bearing soils, which were named as Na-soil, K-soil, Mg-soil, and Ca-soil. Unconfined compressive strength (UCS), swelling, X-ray diffraction, scanning electron microscopy and inductively coupled plasma spectroscopy tests, were conducted to explore the macro- and micro-properties of the lime-GGBS-stabilised soils. The results showed that at 5000 ppm sulphate, stabilised Mg-soil had the lowest swelling and highest UCS. At 20,000 ppm sulphate, stabilised Ca-soil had the lowest swelling, while stabilised Na-soil had the highest UCS. Generally, increasing sulphate concentration decreased swelling for Ca-soil but increased for other three soils, and decreased UCS for Mg-soil but increased for other three soils. This was because less ettringite was generated in the stabilised Ca-soil and the formation of magnesium silicate hydrate (MSH) in the stabilised Mg-soil. Therefore, the sulphate type had a significant impact on the swelling and strength properties of lime-GGBS-stabilised sulphate-bearing soil. It is essential to identify the sulphate type before stabilising the soil on-site.
An analytical methodology was developed for the first time in this work enabling the simultaneous enantiomeric separation of the fungicide fenpropidin and its acid metabolite by Capillary Electrophoresis. A dual cyclodextrin system consisting of 4 % (w/v) captisol with 10 mM methyl-beta-cyclodextrin was employed in a 100 mM sodium acetate buffer at pH 4.0. Optimal experimental conditions (temperature 25 degrees C, separation voltage -25 kV, and hydrodynamic injection of 50 mbar x 10 s) allowed the simultaneous separation of the four enantiomers in <10.7 min with resolutions of 3.1 (fenpropidin) and 3.2 (its acid metabolite). Analytical characteristics of the method were evaluated and found adequate for the quantification of both chiral compounds with a linearity range from 0.75 to 70 mg L-1, good accuracy (trueness included 100 % recovery, precision with RSD<6 %), and limits of detection and quantification of 0.25 and 0.75 mg L-1, respectively, for the four enantiomers. No significant differences were found between the concentrations determined and labelled of fenpropidin in a commercial agrochemical formulation. The stability over time (0-42 days) of fenpropidin enantiomers using the commercial agrochemical formulation was evaluated in two sugar beet soils, revealing to be stable at any time in one sample, while in the other a decrease of 45 % was observed after 42 days. Individual and combined toxicity of fenpropidin and its metabolite was determined for the first time for marine organism Vibrio fischeri, demonstrating higher damage caused by parent compound. Synergistics and antagonists' interactions were observed at low and high effects levels of contaminants.
The aerosol scattering phase function (ASPF), a crucial element of aerosol optical properties, is pivotal for radiative forcing calculations and aerosol remote sensing detection. Current detection methods for the ASPF include multi-sensor detection, single-sensor rotational detection and imaging detection. However, these methods face challenges in achieving high-resolution full-angle measurement, particularly for small forward (i.e., less than 10 degrees) or backward (i.e., more than 170 degrees) scattering angles in open path. In this work, a full-angle ASPF detection system based on the multi-field-of-view Scheimpflug lidar technique has been proposed and demonstrated. A 450 nm continuous-wave semiconductor laser was utilized as the light source and four CMOS image sensors were employed as detectors. To detect the full-angle ASPF, four receiving units capture angular scattering signals across different angle ranges, namely 0 degrees-20 degrees, 10 degrees-96 degrees, 84 degrees-170 degrees, 160 degrees-180 degrees, respectively. The influence of the relative illumination and angular response of the used image sensors have been corrected, and a signal stitching algorithm was developed to obtain a complete 0-180 degrees angular scattering signal. Atmospheric measurements have been conducted by employing the full-angle ASPF detection system in open path. The experimental results of the ASPF have been compared with the AERONET data from the Socheongcho station and simulated ASPF based on the typical aerosol models in mainland China, showing excellent agreement. The promising results demonstrated in this work have shown a great potential for detecting the full-angle ASPF in open path.
Subsequent crops are often sensitive to acetolactate synthase (ALS)-inhibiting herbicide residues, particularly in alkaline soils. The main objective of this study was to compare the impact of different ALS-inhibiting residual herbicides on growth of oil-seed rape (Brassica napus L. subsp. napus) and sugar beet (Beta vulgaris L.) in alkaline soil. In this regard, three experiments were conducted in Prague, Czech Republic, during 2021-2023. In spring, six herbicides (amidosulfuron, chlorsulfuron, imazamox, propoxycarbazone, pyroxsulam, sulfosulfuron) were applied at three application rates (1N - full, 0.5N - half, and 0.05N - 5 % of full). One and four months after application, half of each plot was sown with oilseed rape, and the other half was sown with sugar beet. Herbicide phytotoxicity and aboveground biomass were assessed four weeks after crop emergence. Weather conditions during experimental years, herbicides used, herbicide application rates and the period between herbicide application and crop sowing affected herbicide phytotoxicity and aboveground biomass of both crops. The most damaging effects were recorded with the application of chlorsulfuron for oilseed rape (phytotoxicity was 96-98 % at one month after 1N application) and sulfosulfuron and chlorsulfuron for sugar beet (phytotoxicity was 97-100 % and 90-100 %, respectively). Pyroxsulam caused the least damage to both the crops (average phytotoxicity was 18 %). Herbicide phytotoxicity was 3-times higher, and crop biomass was almost half as much as at the first assessment compared to the second assessment. Sugar beet was more sensitive than oilseed rape to chlorsulfuron and sulfosulfuron, especially in dry conditions, where 0.05 N rates caused biomass reduction of 20-60 % in sugar beet. Most of the tested herbicides could have residual effect that likely damages crops in rotation, particularly if a dry period occurs after the application of herbicides and/or sowing of crops.
Amidst global scarcity, preventing pipeline failures in water distribution systems is crucial for maintaining a clean supply while conserving water resources. Numerous studies have modelled water pipeline deterioration; however, existing literature does not correctly understand the failure time prediction for individual water pipelines. Existing time-to-failure prediction models rely on available data, failing to provide insight into factors affecting a pipeline's remaining age until a break or leak occurs. The study systematically reviews factors influencing time-to-failure, prioritizes them using a magnitude-based fuzzy analytical hierarchy process, and compares results with expert opinion using an in-person Delphi survey. The final pipe-related prioritized failure factors include pipe geometry, material type, operating pressure, pipe age, failure history, pipeline installation, internal pressure, earth and traffic loads. The prioritized environment-related factors include soil properties, water quality, extreme weather events, temperature, and precipitation. Overall, this prioritization can assist practitioners and researchers in selecting features for time-based deterioration modelling. Effective time-to-failure deterioration modelling of water pipelines can create a more sustainable water infrastructure management protocol, enhancing decision-making for repair and rehabilitation. Such a system can significantly reduce non-revenue water and mitigate the socio-environmental impacts of pipeline ageing and damage.
Ensuring the accuracy of free-field inversion is crucial in determining seismic excitation for soil-structure interaction (SSI) systems. Due to the spherical and cylindrical diffusion properties of body waves and surface waves, the near-fault zone presents distinct free-field responses compared to the far-fault zone. Consequently, existing far-fault free-field inversion techniques are insufficient for providing accurate seismic excitation for SSI systems within the near-fault zone. To address this limitation, a tailored near-fault free-field inversion method based on a multi-objective optimization algorithm is proposed in this study. The proposed method establishes an inversion framework for both spherical body waves and cylindrical surface waves and then transforms the overdetermined problem in inversion process into an optimization problem. Within the multi-objective optimization model, objective functions are formulated by minimizing the three-component waveform differences between the observation point and the delayed reference point. Additionally, constraint conditions are determined based on the attenuation property of propagating seismic waves. The accuracy of the proposed method is then verified through near-fault wave motion characteristics and validated against real downhole recordings. Finally, the application of the proposed method is investigated, with emphasis on examining the impulsive property of underground motions and analyzing the seismic responses of SSI systems. The results show that the proposed method refines the theoretical framework of near-fault inversion and accurately restores the free-field characteristics, particularly the impulsive features of near-fault motions, thereby providing reliable excitation for seismic response assessments of SSI systems.
Thawing-triggered slope failures and landslides are becoming an increasing concern in cold regions due to the ongoing climate change. Predicting and understanding the behaviour of frozen soils under these changing conditions is therefore critical and has led to a growing interest in the research community. To address this challenge, we present the first mesh-free smoothed particle hydrodynamics (SPH) computational framework designed to handle the multi-phase and multi-physic coupled thermo-hydro-mechanical (THM) process in frozen soils, namely the THM-SPH computational framework. The frozen soil is considered a tri-phase mixture (i.e., soil, water and ice), whose governing equations are then established based on u-p-T formulations. A critical-state elasto-plastic Clay and Sand Model for Frozen soils (CASM-F), formulated in terms of solid-phase stress, is then introduced to describe the transition response and large deformation behaviour of frozen soils due to thawing action for the first time. Several numerical verifications and demonstrations highlight the usefulness of this advanced THM-SPH computational framework in addressing challenging problems involving thawing-induced large deformation and failures of slopes. The results indicate that our proposed single-layer, fully coupled THM-SPH model can predict the entire failure process of thawing-induced landslides, from the initiation to post-failure responses, capturing the complex interaction among multiple coupled phases. This represents a significant advancement in the numerical modelling of frozen soils and their thawing-induced failure mechanisms in cold regions.
Characterizing vertical profiles of in-situ particle properties is relevant because being only based on the surface or column-integrated measurements cannot unambiguously conclude the radiative impact on aerosol. Vertical profiles of in-situ aerosol properties on-board an unmanned aerial vehicle (UAV) were measured above El Arenosillo (37.1 N,-6.7 W) in the southwest of Spain during four flight missions. Measured properties included particle number size distribution, total particle concentration and multiwavelength absorption coefficient up to 3100 m during cold season (February 4, 2022 and December 11, 2023) and warm season (September 20, 2023 and April 2, 2024). The heterogeneity of particle properties has been shown around two types of events: a mineral particle event of desert origin during cold season and a new particle formation event during warm season. During cold season, a comparison between the flight missions with and without desert dust episodes shows that mineral particles decrease the planetary boundary layer (PBL) height. This behavior is probably related to absorber particles aloft atmosphere, which traps solar radiation and heat up the upper layer of the atmosphere and deteriorates the vertical dispersion. In the literature, this effect is called as 'dome effect'. During warm season, new particle formation was observed above PBL. This event could be related to the presence of precursor gases in the residual layer, and enhanced by a low concentration of pre-existing particles. The characteristic parameter during the observed event was the fine-to-total particle volume concentration ratio close to zero. These observations highlight the necessity to establish a long-term multi-temporal monitoring of vertical profiles for atmospheric parameters onboard UAV systems and to integrate in Earth observations networks. For example, radiative forcing is usually estimated from surface data, but the heterogeneity in the vertical profiles of atmospheric particles properties, which are used to the forcing quantification, is a result of inaccuracies.
Char and soot represent distinct types of elemental carbon (EC) with varying sources and physicochemical properties. However, quantitative studies in sources, atmospheric processes and light-absorbing capabilities between them remain scarce, greatly limiting the understanding of EC's climatic and environmental impacts. For in-depth analysis, concentrations, mass absorption efficiency (MAE) and stable carbon isotope were analyzed based on hourly samples collected during winter 2021 in Nanjing, China. Combining measurements, atmospheric transport model and radiative transfer model were employed to quantify the discrepancies between char-EC and soot-EC. The mass concentration ratio of char-EC to soot-EC (R-C/S) was 1.4 +/- 0.6 (mean +/- standard deviation), showing significant dependence on both source types and atmospheric processes. Case studies revealed that lower R-C/S may indicate enhanced fossil fuel contributions, and/or considerable proportions from long-range transport. Char-EC exhibited a stronger light-absorbing capability than soot-EC, as MAE(char) (7.8 +/- 6.7 m(2)g(-1)) was significantly higher than MAE(soot) (5.4 +/- 3.4 m(2)g(-1))(p < 0.001). Notably, MAE(char) was three times higher than MAE(soot) in fossil fuel emissions, while both were comparable in biomass burning emissions. Furthermore, MAE(soot) increased with aging processes, whereas MAE(char) exhibited a more complex trend due to combined effects of changes in coatings and morphology. Simulations of direct radiative forcing (DRF) for five sites indicated that neglecting the char-EC/soot-EC differentiation could cause a 10 % underestimation of EC's DRF, which further limit accurate assessments of regional air pollution and climate effects. This study underscores the necessity for separate parameterization of two types of EC for pollution mitigation and climate change evaluation.